5,135 research outputs found

    Fourth Generation Leptons and Muon g−2g-2

    Full text link
    We consider the contributions to gμ−2g_\mu-2 from fourth generation heavy neutral and charged leptons, NN and EE, at the one-loop level. Diagrammatically, there are two types of contributions: boson-boson-NN, and EE-EE-boson in the loop diagram. In general, the effect from NN is suppressed by off-diagonal lepton mixing matrix elements. For EE, we consider flavor changing neutral couplings arising from various New Physics models, which are stringently constrained by μ→eγ\mu\to e\gamma. We assess how the existence of a fourth generation would affect these New Physics models.Comment: Minor changes, with references update

    Two-component model for the chemical evolution of the Galactic disk

    Get PDF
    In the present paper, we introduce a two-component model of the Galactic disk to investigate its chemical evolution. The formation of the thick and thin disks occur in two main accretion episodes with both infall rates to be Gaussian. Both the pre-thin and post-thin scenarios for the formation of the Galactic disk are considered. The best-fitting is obtained through χ2\chi^2-test between the models and the new observed metallicity distribution function of G dwarfs in the solar neighbourhood (Hou et al 1998). Our results show that post-thin disk scenario for the formation of the Galactic disk should be preferred. Still, other comparison between model predictions and observations are given.Comment: 23 pages, 7 figure

    Ground-state properties of one-dimensional ultracold Bose gases in a hard-wall trap

    Full text link
    We investigate the ground state of the system of N bosons enclosed in a hard-wall trap interacting via a repulsive or attractive δ\delta-function potential. Based on the Bethe ansatz method, the explicit ground state wave function is derived and the corresponding Bethe ansatz equations are solved numerically for the full physical regime from the Tonks limit to the strongly attractive limit. It is shown that the solution takes different form in different regime. We also evaluate the one body density matrix and second-order correlation function of the ground state for finite systems. In the Tonks limit the density profiles display the Fermi-like behavior, while in the strongly attractive limit the Bosons form a bound state of N atoms corresponding to the N-string solution. The density profiles show the continuous crossover behavior in the entire regime. Further the correlation function indicates that the Bose atoms bunch closer as the interaction constant decreases.Comment: 7 pages, 6 figures, version published in Phys. Rev.

    Block-block entanglement and quantum phase transitions in one-dimensional extended Hubbard model

    Full text link
    In this paper, we study block-block entanglement in the ground state of one-dimensional extended Hubbard model. Our results show that the phase diagram derived from the block-block entanglement manifests richer structure than that of the local (single site) entanglement because it comprises nonlocal correlation. Besides phases characterized by the charge-density-wave, the spin-density-wave, and phase-separation, which can be sketched out by the local entanglement, singlet superconductivity phase could be identified on the contour map of the block-block entanglement. Scaling analysis shows that log2(l){\rm log}_2(l) behavior of the block-block entanglement may exist in both non-critical and the critical regions, while some local extremum are induced by the finite-size effect. We also study the block-block entanglement defined in the momentum space and discuss its relation to the phase transition from singlet superconducting state to the charge-density-wave state.Comment: 8 pages, 9 figure

    Relating Neutrino Masses by dilepton modes of Doubly Charged Scalars

    Full text link
    We study a model with Majorana neutrino masses generated through doubly charged scalars at two-loop level. We give explicit relationships between the neutrino masses and the same sign dilepton decays of the doubly charged scalars. In particular, we demonstrate that at the tribimaximal limit of the neutrino mixings, the absolute neutrino masses and Majorana phases can be extracted through the measurements of the dilepton modes at colliders.Comment: 14 pages, 8 figures, references added, version to be published in PR
    • …
    corecore