2,001 research outputs found

    Genetic learning particle swarm optimization

    Get PDF
    Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for “learning.” This leads to a generalized “learning PSO” paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO

    Adaptive particle swarm optimization

    Get PDF
    An adaptive particle swarm optimization (APSO) that features better search efficiency than classical particle swarm optimization (PSO) is presented. More importantly, it can perform a global search over the entire search space with faster convergence speed. The APSO consists of two main steps. First, by evaluating the population distribution and particle fitness, a real-time evolutionary state estimation procedure is performed to identify one of the following four defined evolutionary states, including exploration, exploitation, convergence, and jumping out in each generation. It enables the automatic control of inertia weight, acceleration coefficients, and other algorithmic parameters at run time to improve the search efficiency and convergence speed. Then, an elitist learning strategy is performed when the evolutionary state is classified as convergence state. The strategy will act on the globally best particle to jump out of the likely local optima. The APSO has comprehensively been evaluated on 12 unimodal and multimodal benchmark functions. The effects of parameter adaptation and elitist learning will be studied. Results show that APSO substantially enhances the performance of the PSO paradigm in terms of convergence speed, global optimality, solution accuracy, and algorithm reliability. As APSO introduces two new parameters to the PSO paradigm only, it does not introduce an additional design or implementation complexity

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Quasiparticle states and quantum interference induce by magnetic impurities on a two-dimensional topological superconductor

    Full text link
    We theoretically study the effect of localized magnetic impurities on two-dimensional topological superconductor (TSC). We show that the local density of states (LDOS) can be tuned by the effective exchange field mm, the chemical potential μ\mu of TSC, and the distance Δr\Delta r as well as relative spin angle α\alpha between two impurities. The changes in Δr\Delta r between two impurities alter the interference and result in significant modifications to the bonding and antibonding states. Furthermore, the bound-state spin LDOS induced by single and double magnetic impurity scattering, the quantum corrals, and the quantum mirages are also discussed. Finally, we briefly compare the impurities in TSC with those in topological insulators.Comment: J. Phys.: Condens. Matter 24, 145502 (2012

    Fever Screening at Airports and Imported Dengue

    Get PDF
    Airport fever screening in Taiwan, July 2003–June 2004, identified 40 confirmed dengue cases. Results obtained by capture immunoglobulin (Ig) M and IgG enzyme-linked immunoassay, real time 1-step polymerase chain reaction, and virus isolation showed that 33 (82.5%) of 40 patients were viremic. Airport fever screening can thus quickly identify imported dengue cases

    Risk factors for pulmonary tuberculosis in patients with chronic obstructive airway disease in Taiwan: a nationwide cohort study

    Get PDF
    BACKGROUND: An association between chronic obstructive pulmonary disease (COPD) and tuberculosis (TB) has been described, mainly due to smoking and corticosteroid use. Whether inhaled corticosteroid (ICS) therapy is associated with an increased risk of TB remains unclear. METHODS: We selected COPD cases by using six diagnostic scenarios and control subjects from a nationwide health insurance database, and applied time-dependent Cox regression analysis to identify the risk factors for TB. RESULTS: Among 1,000,000 beneficiaries, 23,594 COPD cases and 47,188 non-COPD control subjects were selected. Cox regression analysis revealed that age, male gender, diabetes mellitus, end-stage renal disease, and cirrhosis, as well as COPD (hazard ratio = 2.468 [2.205–2.762]) were independent risk factors for TB. Among the COPD cases, those who developed TB received more oral corticosteroids and oral β-agonists. Time-dependent Cox regression analysis revealed that age, male gender, diabetes mellitus, low income, oral corticosteroid dose, and oral β-agonist dose, but not ICS dose, were independent risk factors for TB. The identified risk factors and their hazard ratios were similar among the COPD cases selected using different scenarios. CONCLUSION: Keeping a high suspicion and regularly monitoring for the development of pulmonary TB in COPD patients are necessary, especially for those receiving higher doses of oral corticosteroids and other COPD medications. Although ICS therapy has been shown to predispose COPD patients to pneumonia in large randomized clinical trials, it does not increase the risk of TB in real world practice
    corecore