29 research outputs found

    CC3/TIP30 affects DNA damage repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pro-apoptotic protein CC3/TIP30 has an unusual cellular function as an inhibitor of nucleocytoplasmic transport. This function is likely to be activated under conditions of stress. A number of studies support the notion that CC3 acts as a tumor and metastasis suppressor in various types of cancer. The yeast homolog of CC3 is likely to be involved in responses to DNA damage. Here we examined the potential role of CC3 in regulation of cellular responses to genotoxic stress.</p> <p>Results</p> <p>We found that forced expression of CC3 in CC3-negative cells strongly delays the repair of UV-induced DNA damage. Exogenously introduced CC3 negatively affects expression levels of DDB2/XPE and p21CIP1, and inhibits induction of c-FOS after UV exposure. In addition, exogenous CC3 prevents the nuclear accumulation of P21CIP in response to UV. These changes in the levels/localization of relevant proteins resulting from the enforced expression of CC3 are likely to contribute to the observed delay in DNA damage repair. Silencing of CC3 in CC3-positive cells has a modest delaying effect on repair of the UV induced damage, but has a much more significant negative affect on the translesion DNA synthesis after UV exposure. This could be related to the higher expression levels and increased nuclear localization of p21CIP1 in cells where expression of CC3 is silenced. Expression of CC3 also inhibits repair of oxidative DNA damage and leads to a decrease in levels of nucleoredoxin, that could contribute to the reduced viability of CC3 expressing cells after oxidative insult.</p> <p>Conclusions</p> <p>Manipulation of the cellular levels of CC3 alters expression levels and/or subcellular localization of proteins that exhibit nucleocytoplasmic shuttling. This results in altered responses to genotoxic stress and adversely affects DNA damage repair by affecting the recruitment of adequate amounts of required proteins to proper cellular compartments. Excess of cellular CC3 has a significant negative effect on DNA repair after UV and oxidant exposure, while silencing of endogenous CC3 slightly delays repair of UV-induced damage.</p

    Protein kinase B phosphorylates AHNAK and regulates its subcellular localization

    Get PDF
    AHNAK is a ubiquitously expressed giant phosphoprotein that was initially identified as a gene product subject to transcriptional repression in neuroblastoma. AHNAK is predominantly nuclear in cells of nonepithelial origin, but is cytoplasmic or associated with plasma membrane in epithelial cells. In this study we show that the extranuclear localization of AHNAK in epithelial cells depends on the formation of cell–cell contacts. We show that AHNAK is a phosphorylation substrate of protein kinase B (PKB) in vitro and in vivo. Nuclear exclusion of AHNAK is mediated through a nuclear export signal (NES) in a manner that depends on the phosphorylation of serine 5535 of AHNAK by PKB, a process that also plays a major role in determining extranuclear localization of AHNAK. AHNAK is a new PKB substrate whose function, though unknown, is likely to be regulated by its localization, which is in turn regulated by PKB

    Identification and Analysis of the Active Phytochemicals from the Anti-Cancer Botanical Extract Bezielle

    Get PDF
    Bezielle is a botanical extract that has selective anti-tumor activity, and has shown a promising efficacy in the early phases of clinical testing. Bezielle inhibits mitochondrial respiration and induces reactive oxygen species (ROS) in mitochondria of tumor cells but not in non-transformed cells. The generation of high ROS in tumor cells leads to heavy DNA damage and hyper-activation of PARP, followed by the inhibition of glycolysis. Bezielle therefore belongs to a group of drugs that target tumor cell mitochondria, but its cytotoxicity involves inhibition of both cellular energy producing pathways. We found that the cytotoxic activity of the Bezielle extract in vitro co-purified with a defined fraction containing multiple flavonoids. We have isolated several of these Bezielle flavonoids, and examined their possible roles in the selective anti-tumor cytotoxicity of Bezielle. Our results support the hypothesis that a major Scutellaria flavonoid, scutellarein, possesses many if not all of the biologically relevant properties of the total extract. Like Bezielle, scutellarein induced increasing levels of ROS of mitochondrial origin, progressive DNA damage, protein oxidation, depletion of reduced glutathione and ATP, and suppression of both OXPHOS and glycolysis. Like Bezielle, scutellarein was selectively cytotoxic towards cancer cells. Carthamidin, a flavonone found in Bezielle, also induced DNA damage and oxidative cell death. Two well known plant flavonoids, apigenin and luteolin, had limited and not selective cytotoxicity that did not depend on their pro-oxidant activities. We also provide evidence that the cytotoxicity of scutellarein was increased when other Bezielle flavonoids, not necessarily highly cytotoxic or selective on their own, were present. This indicates that the activity of total Bezielle extract might depend on a combination of several different compounds present within it

    Bezielle Selectively Targets Mitochondria of Cancer Cells to Inhibit Glycolysis and OXPHOS

    Get PDF
    Bezielle (BZL101) is a candidate oral drug that has shown promising efficacy and excellent safety in the early phase clinical trials for advanced breast cancer. Bezielle is an aqueous extract from the herb Scutellaria barbata. We have reported previously that Bezielle was selectively cytotoxic to cancer cells while sparing non-transformed cells. In tumor, but not in non-transformed cells, Bezielle induced generation of ROS and severe DNA damage followed by hyperactivation of PARP, depletion of the cellular ATP and NAD, and inhibition of glycolysis. We show here that tumor cells' mitochondria are the primary source of reactive oxygen species induced by Bezielle. Treatment with Bezielle induces progressively higher levels of mitochondrial superoxide as well as peroxide-type ROS. Inhibition of mitochondrial respiration prevents generation of both types of ROS and protects cells from Bezielle-induced death. In addition to glycolysis, Bezielle inhibits oxidative phosphorylation in tumor cells and depletes mitochondrial reserve capacity depriving cells of the ability to produce ATP. Tumor cells lacking functional mitochondria maintain glycolytic activity in presence of Bezielle thus supporting the hypothesis that mitochondria are the primary target of Bezielle. The metabolic effects of Bezielle towards normal cells are not significant, in agreement with the low levels of oxidative damage that Bezielle inflicts on them. Bezielle is therefore a drug that selectively targets cancer cell mitochondria, and is distinguished from other such drugs by its ability to induce not only inhibition of OXPHOS but also of glycolysis. This study provides a better understanding of the mechanism of Bezielle's cytotoxicity, and the basis of its selectivity towards cancer cells

    Molecular pathways and targets in prostate cancer

    Full text link

    Inhibition of Nuclear Import by the Proapoptotic Protein CC3

    Full text link
    We report here that the normal cellular protein CC3/TIP30, when in excess, inhibits nuclear import in vitro and in vivo. CC3 binds directly to the karyopherins of the importin Ξ² family in a RanGTP-insensitive manner and associates with nucleoporins in vivo. CC3 inhibits the nuclear import of proteins possessing either the classical nuclear localization signal or the M9 signal recognized by transportin. CC3 also inhibits nuclear translocation of transportin itself. Cells modified to express higher levels of CC3 have a slower rate of nuclear import and, as described earlier, show an increased sensitivity to death signals. A mutant CC3 protein lacking proapoptotic activity has a lower affinity for transportin, is displaced from it by RanGTP, and fails to inhibit nuclear import in vitro and in vivo. Together, our results support a correlation between the ability of CC3 to form a RanGTP-resistant complex with importins, inhibit nuclear import, and induce apoptosis. Significantly, a dominant-negative form of importin Ξ²1 shown previously to inhibit multiple transport pathways induces rapid cell death, strongly indicating that inhibition of nuclear transport serves as a potent apoptotic signal
    corecore