60 research outputs found
ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π΄Π΅ΡΠ΅ΡΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ° ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°Ρ - ΠΊΠΎΡΡΠ½Π°Ρ ΡΠΊΠ°Π½Ρ
Aim: a) to develop the method for surface modification of polytetrafluoroethylene (PTFE) by applying a nanostructured metallic or ceramic coating, b) to study the possibility of using this obtained structures with different coatings as an experimental model for analysis of the fine interactions in the contact implant-tissue zone. The study demonstrates that the surface modification of PTFE by magnetron sputtering of nano-Ti and Ti-Ca-P-C-O-N leads to increased integration potential of materials. Data obtained indicate that the designed constructions can be successfully used as an experimental model for studying the interactions of implant - tissue interface elements of periimplant area.Π Π·Π°Π΄Π°ΡΠΈ ΡΠ°Π±ΠΎΡΡ Π²Ρ
ΠΎΠ΄ΠΈΠ»ΠΎ: Π°) ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΌΠ΅ΡΠΎΠ΄Π° ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΠΈΡΠ΅ΡΡΠ°ΡΡΠΎΡΡΡΠΈΠ»Π΅Π½Π° (ΠΠ’Π€Π) ΠΏΡΡΠ΅ΠΌ Π½Π°Π½Π΅ΡΠ΅Π½ΠΈΡ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΊΠ΅ΡΠ°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΡΡΠΈΡ; Π±) ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΠΏΠΎ ΡΠΎΡΡΠ°Π²Ρ ΠΏΠΎΠΊΡΡΡΠΈΡΠΌΠΈ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠ½ΠΊΠΈΡ
Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ° ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°Ρ - ΡΠΊΠ°Π½Π΅Π²ΡΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΠΏΠ΅ΡΠΈΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π·ΠΎΠ½Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π»ΠΎ, ΡΡΠΎ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΠ’Π€Π ΠΏΡΡΠ΅ΠΌ ΠΌΠ°Π³Π½Π΅ΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΠ»Π΅Π½ΠΈΡ Π½Π°Π½ΠΎΠΏΠΎΠΊΡΡΡΠΈΠΉ Ti ΠΈ Ti-Ca-P-C-O-N ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΈΠ½ΡΠ΅Π³ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠ΅ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Ρ ΡΡΠΏΠ΅Ρ
ΠΎΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΠΉΡΠ° ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°Ρ - ΡΠΊΠ°Π½Π΅Π²ΡΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΠΏΠ΅ΡΠΈΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π·ΠΎΠ½Ρ
Characteristics and in vitro response of thin hydroxyapatite-titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions
The enhancement of the biological properties of Ti by surface doping with hydroxyapatite (HA) is of great significance, especially for orthodontic applications. This study addressed the effects of HA particle size in the electrolyte suspension on the characteristics and biological properties of thin titania-based coatings produced on Tiβ6Alβ4V alloy by plasma electrolytic oxidation (PEO). Detailed morphological investigation of the coatings formed by a single-stage PEO process with two-step control of the electrical parameters was performed using the Minkowski functionals approach. The surface chemistry was studied by glow discharge optical emission spectroscopy and Fourier transform infrared spectroscopy, whereas mechanical properties were evaluated using scratch tests. The biological assessment included in vitro evaluation of the coating bioactivity in simulated body fluid (SBF) as well as studies of spreading, proliferation and osteoblastic differentiation of MC3T3-E1 cells. The results demonstrated that both HA micro- and nanoparticles were successfully incorporated in the coatings but had different effects on their surface morphology and elemental distributions. The micro-particles formed an irregular surface morphology featuring interpenetrated networks of fine pores and coating material, whereas the nanoparticles penetrated deeper into the coating matrix which retained major morphological features of the porous TiO2 coating. All coatings suffered cohesive failure in scratch tests, but no adhesive failure was observed; moreover doping with HA increased the coating scratch resistance. In vitro tests in SBF revealed enhanced bioactivity of both HA-doped PEO coatings; furthermore, the cell proliferation/morphometric tests showed their good biocompatibility. Fluorescence microscopy revealed a well-organised actin cytoskeleton and focal adhesions in MC3T3-E1 cells cultivated on these substrates. The cell alkaline phosphatase activity in the presence of ascorbic acid and Ξ²-glycerophosphate was significantly increased, especially in HA nanoparticle-doped coatings
- β¦