1,423 research outputs found
Obtaining a Relationship Between Process Parameters and Fracture Characteristics for Hybrid CO2 Laser∕Waterjet Machining of Ceramics
A combined experimental and analytical approach is undertaken to identify the relationship between process parameters and fracture behavior in the cutting of a 1mm thick alumina samples by a hybrid CO2 laser∕waterjet (LWJ) manufacturing process. In LWJ machining, a 200W power laser was used for local heating followed by waterjet quenching of the sample surface leading to thermal shock fracture in the heated zone. Experimental results indicate three characteristic fracture responses: scribing, controlled separation, and uncontrolled fracture. A Green’s function based approach is used to develop an analytical solution for temperatures and stress fields generated in the workpiece during laser heating and subsequent waterjet quenching along the machining path. Temperature distribution was experimentally measured using thermocouples and compared with analytical predictions in order to validate the model assumptions. Computed thermal stress fields are utilized to determine the stress intensity factor and energy release rate for different configurations of cracks that caused scribing or separation of the workpiece. Calculated crack driving forces are compared with fracture toughness and critical energy release rates to predict the equilibrium crack length for scribed samples and the process parameters associated with transition from scribing to separation. Both of these predictions are in good agreement with experimental observations. An empirical parameter is developed to identify the transition from controlled separation to uncontrolled cracking because the equilibrium crack length based analysis is unable to predict this transition. Finally, the analytical model and empirical parameter are utilized to create a map that relates the process parameters to the fracture behavior of alumina samples
Novel Differential Surface Stress Sensor for Detection of Chemical and Biological Species
A miniature sensor consisting of two adjacent micromachined cantilevers (a sensing/reference pair) is developed for detection of chemical and biological species. A novel interferometric technique is utilized to measure the differential bending of sensing cantilever with respect to reference. Presence of species is detected by measuring the differential surface stress associated with adsorption/absorption of chemical species on sensing cantilever. Surface stress associated with formation of alkanethiol self-assembled monolayers (SAMs) on the sensing cantilever is measured to characterize the sensor performance
Cantilever deflection associated with hybridization of monomolecular DNA film
Recent experiments show that specific binding between a ligand and surface immobilized receptor, such as hybridization of single stranded DNA immobilized on a microcantilever surface, leads to cantilever deflection. The binding-induced deflection may be used as a method for detection of biomolecules, such as pathogens and biohazards. Mechanical deformation induced due to hybridization of surface-immobilized DNA strands is a commonly used system to demonstrate the efficacy of microcantilever sensors. To understand the mechanism underlying the cantilever deflections, a theoretical model that incorporates the influence of ligand/receptor complex surface distribution and empirical interchain potential is developed to predict the binding-induced deflections. The cantilever bending induced due to hybridization of DNA strands is predicted for different receptor immobilization densities, hybridization efficiencies, and spatial arrangements. Predicted deflections are compared with experimental reports to validate the modeling assumptions and identify the influence of various components on mechanical deformation. Comparison of numerical predictions and experimental results suggest that, at high immobilization densities, hybridization-induced mechanical deformation is determined, primarily by immobilization density and hybridization efficiency, whereas, at lower immobilization densities, spatial arrangement of hybridized chains need to be considered in determining the cantilever deflection
Improved Method of CO2 Laser Cutting of Aluminum Nitride
The traditional “evaporation∕melt and blow” mechanism of CO2 laser cutting of aluminum nitride (AlN) chip carriers and heat sinks suffers from energy losses due to its high thermal conductivity, formation of dross, decomposition to aluminum, and uncontrolled thermal cracking. In order to overcome these limitations, a thermochemical method that uses a defocused laser beam to melt a thin layer of AlN surface in oxygen environment was utilized. Subsequent solidification of the melt layer generated shrinkage and thermal gradient stresses that, in turn, created a crack along the middle path of laser beam and caused material separation through unstable crack propagation. The benefits associated with thermal stress fracture method over the traditional method are improved cut quality, higher cutting speed, and lower energy losses
Load Assisted Dissolution AND Damage of Copper Surface under Single Asperity Contact: Influence of Contact Loads and Surface Environment
Copper has become a widely used material in advanced submicron multilevel technologies due to its low resistivity and high electromigration resistance. Copper based devices are manufactured using additive patterning and subsequently undergo chemical mechanical planarization (CMP) to ensure good interconnection. During CMP, material is removed through synergistic combination of chemical reactions and mechanical stimulations. Empirical models such as Preston’s equation are used to explain the material removal rate during CMP but a mechanism based understanding of the synergistic interactions between chemical environment and mechanical loading is still lacking
Dependence of ablative ability of high-intensity focused ultrasound cavitation-based histotripsy on mechanical properties of agar
Cavitation-based histotripsy uses high-intensity focused ultrasound at low duty factor to create bubble clouds inside tissue to liquefy a region, and provides better fidelity to planned lesion coordinates and the ability to perform real-time monitoring. The goal of this study was to identify the most important mechanical properties for predicting lesion dimensions, among these three: Young\u27s modulus, bending strength, and fracture toughness. Lesions were generated inside tissue-mimicking agar, and correlations were examined between the mechanical properties and the lesion dimensions, quantified by lesion volume and by the width and length of the equivalent bubble cluster. Histotripsy was applied to agar samples with varied properties. A cuboid of 4.5mm width (lateral to focal plane) and 6mm depth (along beam axis) was scanned in a raster pattern with respective step sizes of 0.75 and 3mm. The exposure at each treatment location was either 15, 30, or 60s. Results showed that only Young\u27s modulus influenced histotripsy\u27s ablative ability and was significantly correlated with lesion volume and bubble cluster dimensions. The other two properties had negligible effects on lesion formation. Also, exposure time differentially affected the width and depth of the bubble cluster volume
In Situ Stress Measurement During Aluminum Anodizing Using Phase-Shifting Curvature Interferometry
Stress measurements yield insight into technologically relevant deformation and failure mechanisms in electrodeposition, battery reactions, corrosion and anodic oxidation. Aluminum anodizing experiments were performed to demonstrate the effectiveness of phase-shifting curvature interferometry as a new technique for high-resolution in situ stress measurement. This method uses interferometry to monitor surface curvature changes, from which stress evolution is inferred. Phase-shifting of the reflected beams enhanced measurement sensitivity, and the separation of the optical path from the electrochemical cell in the present system provided increased stability. Curvature changes as small as 10−3 km−1 were detected, at least comparable to the resolution of state-of-the-art multiple beam deflectometry. It was demonstrated that small curvature change rates of 10−3 km−1s−1 could be reliably measured, indicating that the technique can be applied to bulk samples. The dependence of the stress change during anodizing on current density (tensile at low current density, but increasingly compressive at higher current densities) was quantitatively consistent with earlier multiple-beam deflectometry measurements. The close similarity between the results of these different high-resolution measurements helps to resolve conflicting reports of anodizing-induced stress changes found in the literature
Morphological Instability Leading to the Formation of Self-Ordered Porous Anodic Oxide Films
Porous anodic oxide (PAO) films are grown by electrochemical polarization of Al, Ti, Zr, Nb, Hf, and W in baths that dissolve the oxide. Procedures to grow films with highly ordered arrangements of nanoscale pores have led to the extensive use of PAO films as templates for nanostructured devices. The porous film geometry may be controlled precisely via the film formation voltage and bath composition (1). Recently, tracer studies and modeling showed that transport in the amorphous oxide involves both electrical migration and plastic flow (2,3). The oxide seems to behave as an incompressible material during steady-state growth of the porous film. Linear stability analysis incorporating the assumption of incompressibility predicted important features of PAO (4). These include the constant ratio of interpore distance to anodizing voltage on Al for any electrolyte composition; narrow ranges of oxidation efficiency (the fraction of oxidized metal atoms that remain in the oxide) producing ordered PAO films on Al and Ti; and the inability to produced ordered films composed of divalent metal oxides. However, the analysis did not predict the observed onset of instability at a critical oxide thickness, and the observed dependence of the interpore distance on the electrolyte composition
Modeling Stress Distributions in Anodic Alumina Films Prior to the Onset of Pore Formation
Porous anodic oxide (PAO) films are produced when reactive metals such as Al and Ti are electrochemically oxidized in baths that dissolve the oxide. Research in PAObased devices has been stimulated by the self-organized hexagonally ordered pore arrays found for some anodizing conditions. The initiation and ordering of pores follows a morphological instability of the initially planar barrier oxide, upon reaching a critical oxide thickness
- …
