36 research outputs found

    Charge Transfer Induced Molecular Hole Doping into Thin Film of Metal-Organic-Frameworks

    Full text link
    Despite the highly porous nature with significantly large surface area, metal organic frameworks (MOFs) can be hardly used in electronic, and optoelectronic devices due to their extremely poor electrical conductivity. Therefore, the study of MOF thin films that require electron transport or conductivity in combination with the everlasting porosity is highly desirable. In the present work, thin films of Co3(NDC)3DMF4 MOFs with improved electronic conductivity are synthesized using layer-by-layer and doctor blade coating techniques followed by iodine doping. The as-prepared and doped films are characterized using FE-SEM, EDX, UV/Visible spectroscopy, XPS, current-voltage measurement, photoluminescence spectroscopy, cyclic voltammetry, and incident photon to current efficiency measurements. In addition, the electronic and semiconductor property of the MOF films are characterized using Hall Effect measurement, which reveals that in contrast to the insulator behavior of the as-prepared MOFs, the iodine doped MOFs behave as a p-type semiconductor. This is caused by charge transfer induced hole doping into the frameworks. The observed charge transfer induced hole doping phenomenon is also confirmed by calculating the densities of states of the as-prepared and iodine doped MOFs based on density functional theory. Photoluminescence spectroscopy demonstrate an efficient interfacial charge transfer between TiO2 and iodine doped MOFs, which can be applied to harvest solar radiations.Comment: Main paper (19 pages, 6 figures) and supplementary information (15 pages, 10 figures), accepted in ACS Appl. Materials & Interface

    Nanoflake NiMn layered double hydroxide coated on porous membrane-like Ni-foam for sustainable and efficient electrocatalytic oxygen evolution

    Get PDF
    Layered double hydroxides (LDHs) have gained vast importance as an electrocatalyst for water electrolysis to produce carbon-neutral and clean hydrogen energy. In this work, we demonstrated the fabrication of nano-flake-like NiMn LDH thin film electrodes onto porous membrane-like Ni-foam by using a simple and cost-effective electrodeposition method for oxygen evolution reaction (OER). Various Ni1-xMnx LDH (where x = 0.15, 0.25, 0.35, 0.50 and 0.75) thin film electrodes are utilized to achieve the optimal catalyst for an efficient and sustainable OER process. The various composition-dependent surface morphologies and porous-membrane-like structure provided the high electrochemical surface area along with abundant active sites facilitating the OER. The optimized catalyst referred to as Ni0.65Mn0.35 showed excellent OER properties with an ultralow overpotential of 253 mV at a current density of 50 mAcm−2, which outperforms other state-of-the art catalysts reported in the literature. The relatively low Tafel slope of 130 mV dec−1 indicates faster and more favorable reaction kinetics for OER. Moreover, Ni0.65Mn0.35 exhibits excellent durability over continuous operation of 20 h, indicating the great sustainability of the catalyst in an alkaline medium. This study provides knowledge for the fabrication and optimization of the OER catalyst electrode for water electrolysis

    Hole-induced polymerized interfacial film of polythiophene as co-sensitizer and back-electron injection barrier layer in dye-sensitized TiO2 nanotube array

    No full text
    In this work, we demonstrate that an ultra-thin film of polythiophene deposited interfacially via hole-induced polymerization on the surface of dye-sensitized TiO2 nanotube array acts as co-sensitizer, and hinders back-electron transfer in a DSSC. Consequently, the dark current, and the recombination reactions can be suppressed, leading to an improved number of electron density at the TiO2 array electrode. Thus, an enhanced photocurrent, and power conversion efficiency of the device is achieved. This logical concept is experimentally justified, and the device, after polythiophene interfacial treatment, demonstrates an enhanced power conversion efficiency by the factor of 39.19%. (C) 2018 Elsevier B.V. All rights reserved.11Nsciescopu

    Facile synthesis and optoelectronic exploration of silylthiophene substituted benzodithiophene polymer for organic field effect transistors

    No full text
    This work reports the synthesis, characterization and organic field effect transistors (OFET) application of a novel conjugated polymer (PBDTDPP) based on silylthiophene substituted benzo[1,2-b:4,5-b']dithiophene (BDT) donor and diketopyrrolopyrrole (DPP) acceptor obtained via Stille polymerization reaction. The polymer exhibits a broad absorption in the UV-visible spectrum ranging from 300 nm to 900 nm with the band edge of the polymer at 1.31 eV. Thermogravimetric analysis of the polymer demonstrates the stability up to 303 degrees C, and the cyclic voltammetry shows the HOMO and LUMO levels at -5.42 and -4.11 eV, respectively. Employing the polymer as an active layer in a bottom gate-top contact based OFET, hole mobility of as high as 9.34 x 10(-2) cm(2) V-1 s(-1) with the On/Off ratio of similar to 10(4) was obtained. This work successfully demonstrates that the DPP and the silylthiophene substituted BDT are promising units to build D-A based copolymer for organic electronics. (c) 2018 Elsevier B.V. All rights reserved.11Nsciescopu

    Au-Pd bimetallic nanoparticles embedded highly porous Fenugreek polysaccharide based micro networks for catalytic applications

    No full text
    Currently, metallic nanoparticles possessing versatile heterogeneous catalytic functionality such as in hydrogenation, water splitting, hydrogen production and CO2 reduction for global pollution remediation have been paid great attentions due to their high chemical stability, superior activity and unique electrical and optical properties. However, the gradual degradation of their catalytic activity on multiple usage limits the monometallic nanoparticles to industrial applications. Herein, we fabricated the highly porous fenugreek polysaccharide assisted green synthesis of Au-Pd nanostructures for heterogeneous catalytic hydrogenation of the industrial usable highly toxic 4-nitrophenol to the medicinally useful 4-aminophenol. The aqueous method developed in the present work is environmentally friendly, simple and low-cost procedure. The fabricated bimetallic porous Au Pd nano structures characterized using SEM, TEM, UV-Vis, XRD, XPS and FTIR analysis. The catalytic activity of the synthesized nanostructures was studied for the heterogeneous hydrogenation of 4-nitrophenol to 4-aminophenol in presence of NaBH4, and the catalytic kinetic for the hydrogenation was analyzed via an UV-Vis spectrometer. (C) 2018 Elsevier B.V. All rights reserved.11Nsciescopu

    Acceptor Unit Effects for Ambipolar Organic Field-Effect Transistors Based on TIPS-Benzodithiophene Copolymers

    No full text
    Two narrow band gap triisopropylsilyl substituted benzo[1,2-b:4,5-b] dithiophene (TIPS-BDT) derivatives, P1 (1.65 eV) and P2 (1.46 eV) are synthesized for ambipolar organic field-effect transistors and complementary inverters. Two electron acceptor units, heptadecanyl substituted thieno[3,4-c]pyrrole-4,6-dione (TPD) and ethylhexyl substituted diketopyrrolo[3,4-c]pyrrole (DPP) are incorporated to tune the structure and resulting properties of the donor-acceptor type copolymers. Structural modification based on the acceptor unit variation, resulted in comparable electrochemical, optical, microstructural, and charge transporting properties, as well as environmental and operational stability. TIPS-BDT copolymers with TPD acceptor units show comparatively superior performance, with field effect mobility approximate to 10(-3) cm(2)V(-1)s(-1) for both holes and electrons and inverter gain approximate to 18 with poly(methyl methacrylate) gate dielectric.11Nsciescopuskc
    corecore