11 research outputs found
The Hilbertian Tensor Norm and Entangled Two-Prover Games
We study tensor norms over Banach spaces and their relations to quantum
information theory, in particular their connection with two-prover games. We
consider a version of the Hilbertian tensor norm and its dual
that allow us to consider games with arbitrary output alphabet
sizes. We establish direct-product theorems and prove a generalized
Grothendieck inequality for these tensor norms. Furthermore, we investigate the
connection between the Hilbertian tensor norm and the set of quantum
probability distributions, and show two applications to quantum information
theory: firstly, we give an alternative proof of the perfect parallel
repetition theorem for entangled XOR games; and secondly, we prove a new upper
bound on the ratio between the entangled and the classical value of two-prover
games.Comment: 33 pages, some of the results have been obtained independently in
arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6
rewritten, v3: completely rewritten in order to improve readability; title
changed; references added; published versio
Actively personalized vaccination trial for newly diagnosed glioblastoma
Experimentele farmacotherapi
Actively personalized vaccination trial for newly diagnosed glioblastoma
Patients with glioblastoma currently do not sufficiently benefit from recent breakthroughs in cancer treatment that use checkpoint inhibitors1,2. For treatments using checkpoint inhibitors to be successful, a high mutational load and responses to neoepitopes are thought to be essential3. There is limited intratumoural infiltration of immune cells4 in glioblastoma and these tumours contain only 30â50 non-synonymous mutations5. Exploitation of the full repertoire of tumour antigensâthat is, both unmutated antigens and neoepitopesâmay offer more effective immunotherapies, especially for tumours with a low mutational load. Here, in the phase I trial GAPVAC-101 of the Glioma Actively Personalized Vaccine Consortium (GAPVAC), we integrated highly individualized vaccinations with both types of tumour antigens into standard care to optimally exploit the limited target space for patients with newly diagnosed glioblastoma. Fifteen patients with glioblastomas positive for human leukocyte antigen (HLA)-A*02:01 or HLA-A*24:02 were treated with a vaccine (APVAC1) derived from a premanufactured library of unmutated antigens followed by treatment with APVAC2, which preferentially targeted neoepitopes. Personalization was based on mutations and analyses of the transcriptomes and immunopeptidomes of the individual tumours. The GAPVAC approach was feasible and vaccines that had poly-ICLC (polyriboinosinic-polyribocytidylic acid-poly-l-lysine carboxymethylcellulose) and granulocyteâmacrophage colony-stimulating factor as adjuvants displayed favourable safety and strong immunogenicity. Unmutated APVAC1 antigens elicited sustained responses of central memory CD8+ T cells. APVAC2 induced predominantly CD4+ T cell responses of T helper 1 type against predicted neoepitopes.</p