7 research outputs found
Differentiation of Heterogeneous Mouse Liver from HCC by Hyperpolarized <sup>13</sup>C Magnetic Resonance
The clinical characterization of small hepatocellular carcinoma (HCC) lesions in the liver and differentiation from heterogeneous inflammatory or fibrotic background is important for early detection and treatment. Metabolic monitoring of hyperpolarized 13C-labeled substrates has been suggested as a new avenue for diagnostic magnetic resonance. The metabolism of hyperpolarized [1-13C]pyruvate was monitored in mouse precision-cut liver slices (PCLS) of aged MDR2-KO mice, which served as a model for heterogeneous liver and HCC that develops similarly to the human disease. The relative in-cell activities of lactate dehydrogenase (LDH) to alanine transaminase (ALT) were found to be 0.40 ± 0.06 (n = 3) in healthy livers (from healthy mice), 0.90 ± 0.27 (n = 3) in heterogeneously inflamed liver, and 1.84 ± 0.46 (n = 3) in HCC. Thus, the in-cell LDH/ALT activities ratio was found to correlate with the progression of the disease. The results suggest that the LDH/ALT activities ratio may be useful in the assessment of liver disease. Because the technology used here is translational to both small liver samples that may be obtained from image-guided biopsy (i.e., ex vivo investigation) and to the intact liver (i.e., in a noninvasive MRI scan), these results may provide a path for differentiating heterogeneous liver from HCC in human subjects
Interventional Oncology and Immuno-Oncology: Current Challenges and Future Trends
Personalized cancer treatments help to deliver tailored and biologically driven therapies for cancer patients. Interventional oncology techniques are able to treat malignancies in a locoregional fashion, with a variety of mechanisms of action leading to tumor necrosis. Tumor destruction determines a great availability of tumor antigens that can be recognized by the immune system, potentially triggering an immune response. The advent of immunotherapy in cancer care, with the introduction of specific immune checkpoint inhibitors, has led to the investigation of the synergy of these drugs when used in combination with interventional oncology treatments. The aim of this paper is to review the most recent advances in the field of interventional oncology locoregional treatments and their interactions with immunotherapy
In-Cell Determination of Lactate Dehydrogenase Activity in a Luminal Breast Cancer Model – <i>ex vivo</i> Investigation of Excised Xenograft Tumor Slices Using dDNP Hyperpolarized [1-<sup>13</sup>C]pyruvate
[1-13C]pyruvate, the most widely used compound in dissolution-dynamic nuclear polarization (dDNP) magnetic resonance (MR), enables the visualization of lactate dehydrogenase (LDH) activity. This activity had been demonstrated in a wide variety of cancer models, ranging from cultured cells, to xenograft models, to human tumors in situ. Here we quantified the LDH activity in precision cut tumor slices (PCTS) of breast cancer xenografts. The Michigan Cancer Foundation-7 (MCF7) cell-line was chosen as a model for the luminal breast cancer type which is hormone responsive and is highly prevalent. The LDH activity, which was manifested as [1-13C]lactate production in the tumor slices, ranged between 3.8 and 6.1 nmole/nmole adenosine tri-phosphate (ATP) in 1 min (average 4.6 ± 1.0) on three different experimental set-ups consisting of arrested vs. continuous perfusion and non-selective and selective RF pulsation schemes and combinations thereof. This rate was converted to an expected LDH activity in a mass ranging between 3.3 and 5.2 µmole/g in 1 min, using the ATP level of these tumors. This indicated the likely utility of this approach in clinical dDNP of the human breast and may be useful as guidance for treatment response assessment in a large number of tumor types and therapies ex vivo
Circulating miR-21 as a prognostic biomarker in HCC treated by CT-guided high-dose rate brachytherapy
Abstract Background and aims Prognostic biomarkers identifying patients with early tumor progression after local ablative therapy remain an unmet clinical need. The aim of this study was to investigate circulating miR-21 and miR-210 levels as prognostic biomarkers of HCC treated by CT-guided high-dose rate brachytherapy (HDR-BT). Materials and Methods 24 consecutive HCC patients (BCLC A and B) treated with CT-guided HDR-BT (1 × 15 Gy) were included in this prospective IRB-approved study. RT-PCR was performed to quantify miR-21 and miR-210 levels in blood samples acquired prior to and 2 d after HDR-BT. Follow-up imaging (contrast-enhanced liver MRI and whole-body CT) was performed in 3 months follow-up intervals. Therapy response was assessed with patients classified as either responders or non-responders (12 each). Responders were defined as having no local or diffuse systemic progression within 6 months and no diffuse systemic progression exceeding 3 nodules/nodule diameter > 3 cm from 6 months to 2 years. Non-responders had recurrence within 6 months and/or tumor progression with > 3 nodules or individual lesion diameter > 3 cm or extrahepatic disease within two years, respectively. Biostatistics included parametric and non-parametric testing (Mann–Whitney-U-test), as well as Kaplan–Meier curve construction. Results The responder group demonstrated significantly decreasing miR-21 values 2 d post therapy compared to non-responders (median miR-21 2−ΔΔCт: responders 0.73 [IQR 0.34], non-responders 1.53 [IQR 1.48]; p = 0.0102). miR-210 did not show any significant difference between responders and non-responders (median miR-210 2−ΔΔCт: responders 0.74 [IQR 0.45], non-responders 0.99 [IQR 1.13]; p = 0.8399). Kaplan–Meier curves demonstrated significantly shorter time to systemic progression for increased miR-21 (p = 0.0095) but not miR-210 (p = 0.7412), with events accumulating > 1 year post therapy in non-responders (median time to systemic progression 397 days). Conclusion Increasing circulating miR-21 levels are associated with poor response and shorter time to systemic progression in HDR-BT-treated HCC. This proof-of-concept study provides a basis for further investigation of miR-21 as a prognostic biomarker and potential stratifier in future clinical trials of interventional oncology therapies. Trial registration: In this monocentric clinical study, we analyzed prospectively acquired data of 24 patients from the “ESTIMATE” patient cohort (Studiennummer: DRKS00010587, Deutsches Register Klinischer Studien). Ethical approval was provided by the ethics committee “Ethikkommission bei der LMU München” (reference number “17-346”) on June 20, 2017 and August 26, 2020
Fibroblast growth factors induce hepatic tumorigenesis post radiofrequency ablation
Abstract Image-guided radiofrequency ablation (RFA) is used to treat focal tumors in the liver and other organs. Despite potential advantages over surgery, hepatic RFA can promote local and distant tumor growth by activating pro-tumorigenic growth factor and cytokines. Thus, strategies to identify and suppress pro-oncogenic effects of RFA are urgently required to further improve the therapeutic effect. Here, the proliferative effect of plasma of Hepatocellular carcinoma or colorectal carcinoma patients 90 min post-RFA was tested on HCC cell lines, demonstrating significant cellular proliferation compared to baseline plasma. Multiplex ELISA screening demonstrated increased plasma pro-tumorigenic growth factors and cytokines including the FGF protein family which uniquely and selectively activated HepG2. Primary mouse and immortalized human hepatocytes were then subjected to moderate hyperthermia in-vitro, mimicking thermal stress induced during ablation in the peri-ablational normal tissue. Resultant culture medium induced proliferation of multiple cancer cell lines. Subsequent non-biased protein array revealed that these hepatocytes subjected to moderate hyperthermia also excrete a similar wide spectrum of growth factors. Recombinant FGF-2 activated multiple cell lines. FGFR inhibitor significantly reduced liver tumor load post-RFA in MDR2-KO inflammation-induced HCC mouse model. Thus, Liver RFA can induce tumorigenesis via the FGF signaling pathway, and its inhibition suppresses HCC development
CT-guided high dose rate brachytherapy can induce multiple systemic proteins of proliferation and angiogenesis predicting outcome in HCC
Background and purpose: To determine the potential prognostic value of proliferation and angiogenesis plasma proteins following CT-guided high dose rate brachytherapy (HDR-BT) of hepatocellular carcinoma (HCC). Materials and methods: For this prospective study, HDR-BT (1 × 15 Gy) was administered to 24 HCC patients. Plasma was obtained and analyzed using an Olink proteomics Target-96 immuno-oncology-panel that included multiple markers of angiogenesis and proliferation. Fold-change (FC) ratios were calculated by comparing baseline and 48 h post HDR-BT paired samples. Patients were classified as responders (n = 12) if they had no local progression within 6 months or systemic progression within 2 years. Non-responders (n = 12) had recurrence within 6 months and/or tumor progression or extrahepatic disease within 2 years. Results: Proliferation marker EGF was significantly elevated in non-responders compared to responders (p = 0.0410) while FGF-2, HGF, and PlGF showed no significant differences. Angiogenesis markers Angiopoietin-1 and PDGF-B were likewise significantly elevated in non-responders compared to responders (p = 0.0171, p = 0.0462, respectively) while Angiopoietin-2, VEGF-A, and VEGFR-2 did not differ significantly. Kaplan-Meier analyses demonstrated significantly shorter time to systemic progression in patients with increased EGF and Angiopoietin-1 (p = 0.0185, both), but not in patients with one of the remaining proteins elevated (all p > 0.1). Pooled analysis for these 9 proteins showed significantly shorter time to systemic progression for FC ≥1.3 and ≥1.5 for at least 3 proteins elevated (p = 0.0415, p = 0.0193, respectively). Conclusion: Increased plasma levels of EGF and Angiopoietin-1 after HDR-BT for HCC are associated with poor response and may therefore function as predictive biomarkers of outcome