7 research outputs found

    Self-amplification of coherent spontaneous emission in a cherenkov free-electron maser

    Get PDF
    Ultrashort pulses of microwave radiation have been produced in a dielectric-lined Cherenkov free-electron maser (FEM) amplifier. An intense initial seed pulse, due to coherent spontaneous emission (CSE), arises at the leading edge of the electron pulse. There is evidence to show that 3-4 cycle spikes are produced through the amplification of these seed pulses. A strong dependence of the start-up power on the rise time of the electron pulse has been found. The experimental results are verified by a theoretical analysis. Our study shows that amplification in a FEM amplifier is always initiated by CSE arising from the edge of the electron pulse when the rise time is comparable to the electromagnetic wave period

    Summation of emission from superradiant sources as a way to obtain extreme power density microwaves

    Get PDF
    A theoretical model that covers both spontaneous and stimulated Cherenkov emission from an extended electron bunch has been developed. The initiation is described of the generation of superradiant pulses [1-3] by emission from the leading edge of the electron bunch. In combination with the proven experimentally picosecond stability of explosive emission from a cold cathode [4], it provides the possibility for strong correlation of phase of the SR pulses with respect to the leading edge of the electron pulse [5]
    corecore