30 research outputs found

    Genomics and proteomics of vertebrate cholesterol ester lipase (LIPA) and cholesterol 25-hydroxylase (CH25H)

    Get PDF
    Cholesterol ester lipase (LIPA; EC 3.1.1.13) and cholesterol 25-hydroxylase (CH25H; EC 1.14.99.48) play essential role in cholesterol metabolism in the body by hydrolysing cholesteryl esters and triglycerides within lysosomes (LIPA) and catalysing the formation of 25-hydroxycholesterol from cholesterol (CH25H) which acts to repress cholesterol biosynthesis. Bioinformatic methods were used to predict the amino acid sequences, structures and genomic features of several vertebrate LIPA and CH25H genes and proteins, and to examine the phylogeny of vertebrate LIPA. Amino acid sequence alignments and predicted subunit structures enabled the identification of key sequences previously reported for human LIPA and CH25H and transmembrane structures for vertebrate CH25H sequences. Vertebrate LIPA and CH25H genes were located in tandem on all vertebrate genomes examined and showed several predicted transcription factor binding sites and CpG islands located within the 5′ regions of the human genes. Vertebrate LIPA genes contained nine coding exons, while all vertebrate CH25H genes were without introns. Phylogenetic analysis demonstrated the distinct nature of the vertebrate LIPA gene and protein family in comparison with other vertebrate acid lipases and has apparently evolved from an ancestral LIPA gene which predated the appearance of vertebrates

    Initial sequencing and analysis of the human genome

    Full text link
    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62798/1/409860a0.pd

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Melbourne Mobile Stroke Unit and Reperfusion Therapy

    No full text

    The DNA sequence of chromosome I of an African trypanosome: gene content, chromosome organisation, recombination and polymorphism

    No full text
    The African trypanosome, Trypanosoma brucei, causes sleeping sickness in humans in sub-Saharan Africa. Here we report the sequence and analysis of the 1.1 Mb chromosome I, which encodes approximately 400 predicted genes organised into directional clusters, of which more than 100 are located in the largest cluster of 250 kb. A 160-kb region consists primarily of three gene families of unknown function, one of which contains a hotspot for retroelement insertion. We also identify five novel gene families. Indeed, almost 20% of predicted genes are members of families. In some cases, tandemly arrayed genes are 99–100% identical, suggesting an active process of amplification and gene conversion. One end of the chromosome consists of a putative bloodstream-form variant surface glycoprotein (VSG) gene expression site that appears truncated and degenerate. The other chromosome end carries VSG and expression site-associated genes and pseudogenes over 50 kb of subtelomeric sequence where, unusually, the telomere-proximal VSG gene is oriented away from the telomere. Our analysis includes the cataloguing of minor genetic variations between the chromosome I homologues and an estimate of crossing-over frequency during genetic exchange. Genetic polymorphisms are exceptionally rare in sequences located within and around the strand-switches between several gene clusters
    corecore