34 research outputs found

    Design, fabrication, and characterization of engineered materials in the microwave and millimeter wave regime

    Get PDF
    In this paper we present the study of a two-dimensional square-lattice photonic crystal with all-angle negative refraction in its first band. Using this photonic crystal, we designed and fabricated a flat lens functioning as a cylindrical lens, by increasing the vertical dimension of the photonic crystal. Two-dimensional finite-difference time-domain simulation validated negative imaging and sub-wavelength resolution. To perform the experiment, a microwave imaging system was built based on a vector network analyzer. Field distributions were acquired by scanning the imaging plane and object plane. The experiment demonstrated negative refraction imaging in both amplitude and phase, and verified sub-wavelength resolution

    Analysis of COVID-19 Guideline Quality and Change of Recommendations: A Systematic Review.

    Get PDF
    Background Hundreds of coronavirus disease 2019 (COVID-19) clinical practice guidelines (CPGs) and expert consensus statements have been developed and published since the outbreak of the epidemic. However, these CPGs are of widely variable quality. So, this review is aimed at systematically evaluating the methodological and reporting qualities of COVID-19 CPGs, exploring factors that may influence their quality, and analyzing the change of recommendations in CPGs with evidence published. Methods We searched five electronic databases and five websites from 1 January to 31 December 2020 to retrieve all COVID-19 CPGs. The assessment of the methodological and reporting qualities of CPGs was performed using the AGREE II instrument and RIGHT checklist. Recommendations and evidence used to make recommendations in the CPGs regarding some treatments for COVID-19 (remdesivir, glucocorticoids, hydroxychloroquine/chloroquine, interferon, and lopinavir-ritonavir) were also systematically assessed. And the statistical inference was performed to identify factors associated with the quality of CPGs. Results We included a total of 92 COVID-19 CPGs developed by 19 countries. Overall, the RIGHT checklist reporting rate of COVID-19 CPGs was 33.0%, and the AGREE II domain score was 30.4%. The overall methodological and reporting qualities of COVID-19 CPGs gradually improved during the year 2020. Factors associated with high methodological and reporting qualities included the evidence-based development process, management of conflicts of interest, and use of established rating systems to assess the quality of evidence and strength of recommendations. The recommendations of only seven (7.6%) CPGs were informed by a systematic review of evidence, and these seven CPGs have relatively high methodological and reporting qualities, in which six of them fully meet the Institute of Medicine (IOM) criteria of guidelines. Besides, a rapid advice CPG developed by the World Health Organization (WHO) of the seven CPGs got the highest overall scores in methodological (72.8%) and reporting qualities (83.8%). Many CPGs covered the same clinical questions (it refers to the clinical questions on the effectiveness of treatments of remdesivir, glucocorticoids, hydroxychloroquine/chloroquine, interferon, and lopinavir-ritonavir in COVID-19 patients) and were published by different countries or organizations. Although randomized controlled trials and systematic reviews on the effectiveness of treatments of remdesivir, glucocorticoids, hydroxychloroquine/chloroquine, interferon, and lopinavir-ritonavir for patients with COVID-19 have been published, the recommendations on those treatments still varied greatly across COVID-19 CPGs published in different countries or regions, which may suggest that the CPGs do not make sufficient use of the latest evidence. Conclusions Both the methodological and reporting qualities of COVID-19 CPGs increased over time, but there is still room for further improvement. The lack of effective use of available evidence and management of conflicts of interest were the main reasons for the low quality of the CPGs. The use of formal rating systems for the quality of evidence and strength of recommendations may help to improve the quality of CPGs in the context of the COVID-19 pandemic. During the pandemic, we suggest developing a living guideline of which recommendations are supported by a systematic review for it can facilitate the timely translation of the latest research findings to clinical practice. We also suggest that CPG developers should register the guidelines in a registration platform at the beginning for it can reduce duplication development of guidelines on the same clinical question, increase the transparency of the development process, and promote cooperation among guideline developers all over the world. Since the International Practice Guideline Registry Platform has been created, developers could register guidelines prospectively and internationally on this platform

    Hybrid Dielectric-Metallic Back Reflector for Amorphous Silicon Solar Cells

    No full text
    In this paper, we present the design and fabrication of hybrid dielectric-metallic back surface reflectors, for applications in thin film amorphous silicon solar cells. Standard multilayer distributed Bragg reflectors, require a large number of layers in order to achieve high reflectance characteristics. As it turns out, the addition of a metallic layer, to the base of such a multilayer mirror, enables a reduction in the number of dielectric layers needed to attain high reflectance performance. This paper explores the design, experimental realization and opportunities, in thin film amorphous silicon solar cells, afforded by such hybrid dielectric-metallic back surface reflectors

    Quantum Electrodynamic Modeling of Silicon-Based Active Devices

    No full text
    We propose a time-domain analysis of an active medium based on a coupled quantum mechanical and electromagnetic model to accurately simulate the dynamics of silicon-based photonic devices. To fully account for the nonlinearity of an active medium, the rate equations of a four-level atomic system are introduced into the electromagnetic polarization vector. With these auxiliary differential equations, we solve the time evolution of the electromagnetic waves and atomic population densities using the FDTD method. The developed simulation approach has been used to model light amplification and amplified spontaneous emission in silicon nanocrystals, as well as the lasing dynamics in a novel photonic crystal-based silicon microcavity

    Fabrication of Large Area Fishnet Optical Metamaterial Structures Operational at Near-IR Wavelengths

    No full text
    In this paper, we demonstrate a fabrication process for large area (2 mm × 2 mm) fishnet metamaterial structures for near IR wavelengths. This process involves: (a) defining a sacrificial Si template structure onto a quartz wafer using deep-UV lithography and a dry etching process (b) deposition of a stack of Au-SiO2-Au layers and (c) a ‘lift-off’ process which removes the sacrificial template structure to yield the fishnet structure. The fabrication steps in this process are compatible with today’s CMOS technology making it eminently well suited for batch fabrication. Also, depending on area of the exposure mask available for patterning the template structure, this fabrication process can potentially lead to optical metamaterials spanning across wafer-size areas

    Development of Electro-Optic Phase Modulator for 94 GHz Imaging System

    No full text

    Integrated lithium niobate intensity modulator on a silicon handle with slow-wave electrodes

    Full text link
    Segmented, or slow-wave electrodes have emerged as an index-matching solution to improve bandwidth of traveling-wave Mach Zehnder and phase modulators on the thin-film lithium niobate on insulator platform. However, these devices require the use of a quartz handle or substrate removal, adding cost and additional processing. In this work, a high-speed dual-output electro-optic intensity modulator in the thin-film silicon nitride and lithium niobate material system that uses segmented electrodes for RF and optical index matching is presented. The device uses a silicon handle and does not require substrate removal. A silicon handle allows the use of larger wafer sizes to increase yield, and lends itself to processing in established silicon foundries that may not have the capability to process a quartz or fused silica wafer. The modulator has an interaction region of 10 mm, shows a DC half wave voltage of 3.75 V, an ultra-high extinction ratio of roughly 45 dB consistent with previous work, and a fiber-to-fiber insertion loss of 7.47 dB with a 95 GHz 3 dB bandwidth.Comment: 4 pages, 3 figure
    corecore