72 research outputs found

    Year-Round Grazing of Beef Cows on Pangolagrass (\u3ci\u3eDigitaria Decumbens\u3c/i\u3e Cv.Transvala) Pasture in Southern Area of Japan

    Get PDF
    The southern area of Japan (Okinawa) has a sub-tropical climate. In this area beef calf production is now based on year-round grazing on giant stargrass (Cynodon aethiopicus Clayton & Haylan). However, the numbers of beef cows in this area are increasing rapidly and a grass with higher productivity than giant stargrass is required. The objective of this experiment was to examine the possibility of using pangolagrass (Digitaria decumbens cv. Transvala) pasture in this area

    An Almost Perfect Quantum Lattice Action for Low-energy SU(2) Gluodynamics

    Full text link
    We study various representations of infrared effective theory of SU(2) Gluodynamics as a (quantum) perfect lattice action. In particular we derive a monopole action and a string model of hadrons from SU(2) Gluodynamics. These are lattice actions which give almost cut-off independent physical quantities even on coarse lattices. The monopole action is determined by numerical simulations in the infrared region of SU(2) Gluodynamics. The string model of hadrons is derived from the monopole action by using BKT transformation. We illustrate the method and evaluate physical quantities such as the string tension and the mass of the lowest state of the glueball analytically using the string model of hadrons. It turns out that the classical results in the string model is near to the one in quantum SU(2) Gluodynamics.Comment: 39 pages, 10 figure

    Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model

    Full text link
    Dynamics of earthquake nucleation process is studied on the basis of the one-dimensional Burridge-Knopoff (BK) model obeying the rate- and state-dependent friction (RSF) law. We investigate the properties of the model at each stage of the nucleation process, including the quasi-static initial phase, the unstable acceleration phase and the high-speed rupture phase or a mainshock. Two kinds of nucleation lengths L_sc and L_c are identified and investigated. The nucleation length L_sc and the initial phase exist only for a weak frictional instability regime, while the nucleation length L_c and the acceleration phase exist for both weak and strong instability regimes. Both L_sc and L_c are found to be determined by the model parameters, the frictional weakening parameter and the elastic stiffness parameter, hardly dependent on the size of an ensuing mainshock. The sliding velocity is extremely slow in the initial phase up to L_sc, of order the pulling speed of the plate, while it reaches a detectable level at a certain stage of the acceleration phase. The continuum limits of the results are discussed. The continuum limit of the BK model lies in the weak frictional instability regime so that a mature homogeneous fault under the RSF law always accompanies the quasi-static nucleation process. Duration times of each stage of the nucleation process are examined. The relation to the elastic continuum model and implications to real seismicity are discussed.Comment: Title changed. Changes mainly in abstract and in section 1. To appear in European Physical Journal

    Role of Shrimp Chitin in the Ecology of Toxigenic Vibrio cholerae and Cholera Transmission

    Get PDF
    Seasonal plankton blooms correlate with occurrence of cholera in Bangladesh, although the mechanism of how dormant Vibrio cholerae, enduring interepidemic period in biofilms and plankton, initiates seasonal cholera is not fully understood. In this study, laboratory microcosms prepared with estuarine Mathbaria water (MW) samples supported active growth of toxigenic V. cholerae O1 up to 7 weeks as opposed to 6 months when microcosms were supplemented with dehydrated shrimp chitin chips (CC) as the single source of nutrient. Bacterial counting and detection of wbe and ctxA genes were done employing culture, direct fluorescent antibody (DFA) assay, and multiplex-polymerase chain reaction methods. In MW microcosm, the aqueous phase became clear as the non-culturable cells settled, whereas the aqueous phase of the MW–CC microcosm became turbid from bacterial growth stimulated by chitin. Bacterial chitin degradation and biofilm formation proceeded from an initial steady state to a gradually declining bacterial culturable count. V. cholerae within the microenvironments of chitin and chitin-associated biofilms remained metabolically active even in a high acidic environment without losing either viability or virulence. It is concluded that the abundance of chitin that occurs during blooms plays an important role in the aquatic life cycle of V. cholerae and, ultimately, in the seasonal transmission of cholera

    Identification of Inappropriately Reprogrammed Genes by Large-Scale Transcriptome Analysis of Individual Cloned Mouse Blastocysts

    Get PDF
    Although cloned embryos generated by somatic/embryonic stem cell nuclear transfer (SECNT) certainly give rise to viable individuals, they can often undergo embryonic arrest at any stage of embryogenesis, leading to diverse morphological abnormalities. In an effort to gain further insights into reprogramming and the properties of SECNT embryos, we performed a large-scale gene expression profiling of 87 single blastocysts using GeneChip microarrays. Sertoli cells, cumulus cells, and embryonic stem cells were used as donor cells. The gene expression profiles of 87 blastocysts were subjected to microarray analysis. Using principal component analysis and hierarchical clustering, the gene expression profiles were clearly classified into 3 clusters corresponding to the type of donor cell. The results revealed that each type of SECNT embryo had a unique gene expression profile that was strictly dependent upon the type of donor cells, although there was considerable variation among the individual profiles within each group. This suggests that the reprogramming process is distinct for embryos cloned from different types of donor cells. Furthermore, on the basis of the results of comparison analysis, we identified 35 genes that were inappropriately reprogrammed in most of the SECNT embryos; our findings demonstrated that some of these genes, such as Asz1, Xlr3a and App, were appropriately reprogrammed only in the embryos with a transcriptional profile that was the closest to that of the controls. Our findings provide a framework to further understand the reprogramming in SECNT embryos

    New Organic−Inorganic Nanocomposite Materials for Energy Storage Applications

    No full text

    The molecular mechanism for carbon catabolite repression of the chitin response in Vibrio cholerae.

    No full text
    Vibrio cholerae is a facultative pathogen that primarily occupies marine environments. In this niche, V. cholerae commonly interacts with the chitinous shells of crustacean zooplankton. As a chitinolytic microbe, V. cholerae degrades insoluble chitin into soluble oligosaccharides. Chitin oligosaccharides serve as both a nutrient source and an environmental cue that induces a strong transcriptional response in V. cholerae. Namely, these oligosaccharides induce the chitin sensor, ChiS, to activate the genes required for chitin utilization and horizontal gene transfer by natural transformation. Thus, interactions with chitin impact the survival of V. cholerae in marine environments. Chitin is a complex carbon source for V. cholerae to degrade and consume, and the presence of more energetically favorable carbon sources can inhibit chitin utilization. This phenomenon, known as carbon catabolite repression (CCR), is mediated by the glucose-specific Enzyme IIA (EIIAGlc) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). In the presence of glucose, EIIAGlc becomes dephosphorylated, which inhibits ChiS transcriptional activity by an unknown mechanism. Here, we show that dephosphorylated EIIAGlc interacts with ChiS. We also isolate ChiS suppressor mutants that evade EIIAGlc-dependent repression and demonstrate that these alleles no longer interact with EIIAGlc. These findings suggest that EIIAGlc must interact with ChiS to exert its repressive effect. Importantly, the ChiS suppressor mutations we isolated also relieve repression of chitin utilization and natural transformation by EIIAGlc, suggesting that CCR of these behaviors is primarily regulated through ChiS. Together, our results reveal how nutrient conditions impact the fitness of an important human pathogen in its environmental reservoir
    corecore