39 research outputs found

    Recent progress on the simulation technology of magnetic fluid

    No full text

    Recent progress on the magnetorheological plastomers

    No full text
    Different from the traditional magnetorheological (MR) fluids and elastomers, the magnetic particles in the plastic MR materials are not ‘deadly’ trapped in the polymer matrix; thus, the MR plastomers exhibit higher MR effects and lower sedimentation. The plastic MR materials have attracted increasing attention, and the relevant fundamental mechanisms and practical applications have been intensively studied due to their unique physical and mechanical properties. In this highlight, we have mainly reviewed the preparation and the rheological properties of the MR plastomers. The formation mechanism of the MR plastomers has also been briefly summarized

    Magnetic-Field-Induced Improvement of Photothermal Sterilization Performance by Fe3O4@SiO2@Au/PDA Nanochains

    No full text
    Due to the abuse of antibiotics, the sensitivity of patients to antibiotics is gradually reduced. This work develops a Fe3O4@SiO2@Au/PDA nanochain which shows an interesting magnetic-field-induced improvement of its photothermal antibacterial property. First, SiO2 was wrapped on Fe3O4 nanospheres assembled in a chain to form a Fe3O4@SiO2 nanocomposite with a chain-like nanostructure. Then, the magnetic Fe3O4@SiO2@Au/PDA nanochains were prepared using in situ redox-oxidization polymerization. Under the irradiation of an 808 nm NIR laser, the temperature rise of the Fe3O4@SiO2@Au/PDA nanochain dispersion was obvious, indicating that they possessed a good photothermal effect. Originating from the Fe3O4, the Fe3O4@SiO2@Au/PDA nanochain showed a typical soft magnetic behavior. Both the NIR and magnetic field affected the antimicrobial performance of the Fe3O4@SiO2@Au/PDA nanochains. Escherichia coli and Staphylococcus aureus were used as models to verify the antibacterial properties. The experimental results showed that the Fe3O4@SiO2@Au/PDA nanochains exhibited good antibacterial properties under photothermal conditions. After applying a magnetic field, the bactericidal effect was further significantly enhanced. The above results show that the material has a broad application prospect in inhibiting the growth of bacteria

    A shape-deformable liquid-metal-filled magnetorheological plastomer sensor with a magnetic field “on-off” switch

    No full text
    Summary: Flexible viscoelastic sensors have gained significant attention in wearable devices owing to their exceptional strain-dependent electrical resistance. Most of the strain sensors are elastic composites, thus the internal stress is often preserved during the deformation when they are attached to the uneven target. Therefore, there is a pressing need for viscoelastic composites with highly self-adapted electromechanical properties sensitive to multiexternal circumstances. This work reports a liquid-metal-filled magnetorheological plastomer (LMMRP) that shows a high response behavior to the external stimulus such as magnetic field, temperature, and force. The shape-deformable LMMRP can transform from an insulator to a conductor under applying a magnetic field, thus the further viscoelastic sensor possesses a magnetic field “on-off” switch effect. The microstructure-dependent magnetic/thermal/mechanical-electrical coupling characteristics are investigated, and several proof-of-concept sensor applications, such as magnetic control, environment recognition, and motion monitoring, are demonstrated. These LMMRP composites show a broad potential in flexible sensors and soft electronics

    Magnetorheological Damper Working in Squeeze Mode

    No full text
    This research is focused on evaluation of the magnetorheological fluids (MRFs) based damper which works in squeeze mode. The operation direction of this damper is parallel to the direction of the external magnetic field. Before testing, commercial software ANSYS was used to analyze the magnetic field distribution inside the damper generated by charging current in the coil. The performance of the damper was tested by using the MTS809 (produced by MTS Systems Corporation, USA). For simulation of this damper, a mathematical model was set up. Experimental results showed that the small squeezed MR damper could produce large damping force; for example, the maximum damping force is nearly 6 kN, while the amplitude is 1.2 mm, the frequency is 1.0 Hz, and the current is 2.0 A, and the damping force was controllable by changing the current in the coil. The damping force versus displacement curves are complex. We divide them into four regions for simulation. The maximum damper force increased quickly with the increasing of the current in coil. This kind of damper can be used in vibration isolation for precise equipment

    Magneto-induced normal stress of magnetorheological plastomer

    No full text
    An abrupt drop phenomenon of magneto-induced normal stress of magnetorheological plastomer is reported and a microstructure dependent slipping hypothesis is proposed to interpret this interesting behavior. For polyurethane based magnetorheological plastomer sample with 70 wt.% carbonyl iron powder, the magneto-induced normal stress can reach to as high as 60.2 kPa when a 930 mT magnetic field is suddenly applied. Meanwhile, the normal stress shows unpredicted abrupt drop. Particle dynamics is used to investigate the physical generating mechanism of normal stress. The simulation result agrees well with the experimental result, indicating that the interior microstructure of iron particle aggregation plays a crucial role to the normal stress

    Dual-modulus 3D printing technology for magnetorheological Metamaterials-Part II: Negative regulation theory and application

    No full text
    Metamaterials are artificially structured periodic materials that have remarkable property of wave attenuation in bandgaps. However, metamaterials with adjustable and low-frequency bandgap are still challenge in traditional method. In this work, a novel magnetorheological metamaterial (MRM) with negative regulation and low -frequency bandgaps was fabricated by dual-modulus 3D printing technology. The bandgaps of negative regulation MRM were analyzed theoretically by using the mass-spring model. As a result, the starting frequency of bandgap reduced by 37.6% and ending frequency increased by 47.8% under external magnetic field. Moreover, the propagation characteristics of longitudinal wave in negative regulation MRM were also studied and the results indicated that the stiffnesses were magnetic-related, and the bandgap can be tuned substantially under external magnetic field. This work presented a negative regulation MRM that the bandgap was broadened and moved to lower frequency under the external magnetic field, showing a great potential in the field of vibration isolation
    corecore