20 research outputs found

    Study on Electrode Potential of Zinc Nickel Single-Flow Battery during Charge

    No full text
    In this study of zinc nickel single-flow batteries (ZNB), the ion concentration of the convection area and the electrode surface of the battery runner were investigated first. Then, the relationships between the electrode over-potential (or equilibrium potential) and the charge time were studied. This was based on the electrochemical reaction rate equation and the equilibrium potential equation, from which a mathematical model of the stack voltage (as affected by the internal parameters of the battery) was obtained. By comparison with experimental data, it was determined that the relative error of the simulated stack voltage of a 300 Ah battery was restricted to <0.62% while charging under the condition of 100 A constant-current charging. This shows that the mathematical model can accurately describe the dynamic characteristics of the battery stack voltage, and is very accurate for predicting the stack voltage of the battery during charging under 100 A constant-current charging conditions

    Effect of Nanofluids on Boiling Heat Transfer Performance

    No full text
    At present, there are many applications of nanofluids whose research results are fruitful. Nanofluids can enhance the critical heat flux, but the effect on boiling heat transfer performance still has disagreement. Base liquids with higher viscosity improve the boiling heat transfer performance of nanofluids. When the base liquid is a multicomponent solution, the relative movement between the different solutions enhances the microscopic movement of the nanoparticles due to the different evaporation order during the boiling process, so that the boiling heat transfer performance is enhanced. Compared with the thermal conductivity of the heated surface, the deposition of the low thermal conductivity nanoparticles reduces the heat dissipation rate of the heated surface and improves the wall superheat. Then the enhancement of the boiling heat transfer coefficient should be attributed to the thermal conductivity improvement of base fluid and the bubble disturbance resulted from the nanoparticle’s microscopic motion

    A Small RO and MCDI Coupled Seawater Desalination Plant and Its Performance Simulation Analysis and Optimization

    No full text
    To solve the problems of high specific energy consumption and excessive harmful ions in the water production of a small reverse osmosis (RO) plant, a desalination system coupling RO and membrane capacitive deionization (MCDI) is proposed in this study. Aiming at producing two cubic meters per day of fresh water with a salt concentration of less than 280 mg L−1, parameter matching optimization was carried out on two desalination system schemes of one-stage two-section RO and one-stage three-section RO coupled with MCDI. The results were compared with the parameter matching optimization results of the one-stage one-section RO and the one-stage two-section pure RO desalination system. The results show that compared with the pure RO desalination mode, the seawater desalination mode coupled with RO and MCDI reduces the specific energy consumption under the same effluent salt concentration. Moreover, it decreases the feed water pressure in front of the RO membrane, which can reduce the standard of high-pressure pump in a small seawater desalination plant. The energy consumption of the one-stage three-section RO and MCDI coupling system is lower than that of the one- stage two-section RO and MCDI coupling system, and the feed water pressure is also lower

    SIMULATION OF FLOW BOILING OF NANOFLUID IN TUBE BASED ON LATTICE BOLTZMANN MODEL

    No full text
    In this study, a lattice Boltzmann model of bubble flow boiling in a tube is established. The bubble growth, integration, and departure of 3% Al2O3-water nanofluid in the process of flow boiling are selected to simulate. The effects of different bubble distances and lateral accelerations a on the bubble growth process and the effect of heat transfer are investigated. Results showed that with an increase in the bubble distance, the bubble coalescence and the effect of heat transfer become gradual. With an increase in lateral acceleration a, the bubble growth is different. When a = 0.5e-7 and a = 0.5e-6, the bubble growth includes the process of bubble growth, coalescence, detachment, and fusion with the top bubble and when a = 0.5e-5 and a = 0.5e-4, the bubbles only experience growth and fusion, and the bubbles do not merge with the top bubble directly to the right movement because the lateral acceleration is too large, resulting in the enhanced effect of heat transfer in the tube

    Equivalent Circuit Model Construction and Dynamic Flow Optimization Based on Zinc–Nickel Single-Flow Battery

    No full text
    Based on the zinc⁻nickel single-flow battery, a generalized electrical simulation model considering the effects of flow rate, self-discharge, and pump power loss is proposed. The results compared with the experiment show that the simulation results considering the effect of self-discharge are closer to the experimental values, and the error range of voltage estimation during charging and discharging is between 0% and 3.85%. In addition, under the rated electrolyte flow rate and different charge⁻discharge currents, the estimation of Coulomb efficiency by the simulation model is in good agreement with the experimental values. Electrolyte flow rate is one of the parameters that have a great influence on system performance. Designing a suitable flow controller is an effective means to improve system performance. In this paper, the genetic algorithm and the theoretical minimum flow multiplied by different flow factors are used to optimize the variable electrolyte flow rate under dynamic SOC (state of charge). The comparative analysis results show that the flow factor optimization method is a simple means under constant charge⁻discharge power, while genetic algorithm has better performance in optimizing flow rate under varying (dis-)charge power and state of charge condition in practical engineering

    Preparation of N-Doped Layered Porous Carbon and Its Capacitive Deionization Performance

    No full text
    In this study, N-doped layered porous carbon prepared by the high-temperature solid-state method is used as electrode material. Nano calcium carbonate (CaCO3) (40 nm diameter) is used as the hard template, sucrose (C12H22O11) as the carbon source, and melamine (C3H6N6) as the nitrogen source. The materials prepared at 850 °C, 750 °C, and 650 °C are compared with YP-50F commercial super-activated carbon from Japan Kuraray Company. The electrode material at 850 °C pyrolysis temperature has a higher specific surface area and more pores suitable for ion adsorption. Due to these advantages, the salt adsorption capacity (SAC) of the N-doped layered porous carbon at 850 °C reached 12.56 mg/g at 1.2 V applied DC voltage, 500 mg/L initial solution concentration, and 15 mL/min inlet solution flow rate, which is better than the commercial super activated carbon as a comparison. In addition, it will be demonstrated that the N-doped layered porous carbon at 850 °C has a high salt adsorption capacity CDI performance than YP-50F by studying parameters with different applied voltages and flow rates as well as solution concentrations

    Design and optimization of LNG-powered ship cold energy and waste heat integrated utilization system based on novel intermediate fluid vaporizer

    No full text
    Based on a novel integrated intermediate fluid vaporizer with liquefied natural gas (LNG) cold energy utilization proposed by the author's team, a full-power generation integrated system is constructed in this study. It is a two-stage cascade Rankine cycle with two-stage condensation and coupled with a trans-critical CO2 Rankine cycle. This study regards a river–sea direct transportation type of 25,000-ton LNG fuel-powered chemical ship as the application object and considers combined utilization of the medium-temperature waste heat of flue gas from the exhaust turbine power generation cycle outlet and the vaporization cold energy of LNG. Through the simulation and analysis of the scheme, circulating working fluid optimization and operation parameter optimization based on a genetic algorithm are conducted. The overall exergy efficiency of the optimized system reaches 45.1%, while the power generation of the system reaches 72.66 kW. Furthermore, economic analysis shows that the net annual income of the optimized system can reach 280,700 yuan, and the recovery cycle of initial investment cost is expected to be 6.11 years

    THE STUDY OF NATURAL CONVECTION HEAT TRANSFER OF NANOFLUIDS IN A PARTIALLY POROUS CAVITY BASED ON LATTICE BOLTZMANN METHOD

    No full text
    This article used the lattice Boltzmann method to study the heat transmission of natural convective of nanofluids in a 2-D square cavity partially filled with porous medium. The nanoparticles volume fraction of A1203, Cu, and Si02 were 0.5%, 1%, 1.5%, 2%,.5/,06, and 4%, which were mixed with water and 70% of ethylene glycol aqueous solution as the base fluid, and made up six kinds of nanofluids as the research object. Using nanofluids coupled double distribution lattice Boltzmann method model, this paper studied the rules of natural convection heat transfer of different nanofluids with the changing of Rayleigh number and the concentration of the nanoparticles in the 2-D square cavity partially filled with porous medium. The results showed that the average Nusselt number of the hot wall will increase with the increase of Rayleigh number number, and under different heat transfer conditions, there are two different critical Rayleigh numbers. In the case of different concentrations of the same concentration, the critical Rayleigh number is about 105, when Ra > Rae, the average Nusselt number of water is higher; when Ra Rae, there is a slight decreasing in the average Nusselt number with the increasing of concentration. The critical Rayleigh number of water as the base fluid is smaller than that of ethylene glycol as the base fluid

    Preparation of N-Doped Layered Porous Carbon and Its Capacitive Deionization Performance

    No full text
    In this study, N-doped layered porous carbon prepared by the high-temperature solid-state method is used as electrode material. Nano calcium carbonate (CaCO3) (40 nm diameter) is used as the hard template, sucrose (C12H22O11) as the carbon source, and melamine (C3H6N6) as the nitrogen source. The materials prepared at 850 °C, 750 °C, and 650 °C are compared with YP-50F commercial super-activated carbon from Japan Kuraray Company. The electrode material at 850 °C pyrolysis temperature has a higher specific surface area and more pores suitable for ion adsorption. Due to these advantages, the salt adsorption capacity (SAC) of the N-doped layered porous carbon at 850 °C reached 12.56 mg/g at 1.2 V applied DC voltage, 500 mg/L initial solution concentration, and 15 mL/min inlet solution flow rate, which is better than the commercial super activated carbon as a comparison. In addition, it will be demonstrated that the N-doped layered porous carbon at 850 °C has a high salt adsorption capacity CDI performance than YP-50F by studying parameters with different applied voltages and flow rates as well as solution concentrations
    corecore