182 research outputs found
Interpreting the charge-dependent flow and constraining the chiral magnetic wave with event shape engineering
The charge asymmetry (Ach) dependence of anisotropic flow serves as an
important tool to search for the chiral magnetic wave (CMW) in heavy-ion
collisions. However, the background effect, such as the local charge
conservation (LCC) entwined with collective flow, has not yet been
unambiguously eliminated in the measurement. With the help of two models, the
AMPT with initial quadrupole moment and the blast wave (BW) incorporating LCC,
we discuss the features of the LCC-induced and the CMW-induced correlations
between Ach and the flow. More importantly, we first propose to use the Event
Shape Engineering (ESE) technique to distinguish the background and the signal
for the CMW study. This method would be highly desirable in the experimental
search for the CMW and provides more insights for understanding the
charge-dependent collective motion of the quark-gluon plasma.Comment: 7 pages, 5 figure
Global constraint on the magnitude of anomalous chiral effects in heavy-ion collisions
When searching for anomalous chiral effects in heavy-ion collisions, one of
the most crucial points is the relationship between the signal and the
background. In this letter, we present a simulation in a modified blast wave
model at LHC energy, which can simultaneously characterize the majority of
measurable quantities, in particular, the chiral magnetic effect (CME) and the
chiral magnetic wave (CMW) observables. Such a universal description, for the
first time, naturally and quantitatively unifies the CME and the CMW studies
and brings to light the connection with the local charge conservation (LCC)
background. Moreover, a simple phenomenological approach is performed to
introduce the signals, aiming at quantifying the maximum allowable strength of
the signals within experimental precision. Such a constraint provides a novel
perspective to understand the experimental data and sheds new light on the
study of anomalous chiral effects as well as charge dependent correlations.Comment: 8 pages, 5 figure
Natural products in atherosclerosis therapy by targeting PPARs: a review focusing on lipid metabolism and inflammation
Inflammation and dyslipidemia are critical inducing factors of atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and control the expression of multiple genes that are involved in lipid metabolism and inflammatory responses. However, synthesized PPAR agonists exhibit contrary therapeutic effects and various side effects in atherosclerosis therapy. Natural products are structural diversity and have a good safety. Recent studies find that natural herbs and compounds exhibit attractive therapeutic effects on atherosclerosis by alleviating hyperlipidemia and inflammation through modulation of PPARs. Importantly, the preparation of natural products generally causes significantly lower environmental pollution compared to that of synthesized chemical compounds. Therefore, it is interesting to discover novel PPAR modulator and develop alternative strategies for atherosclerosis therapy based on natural herbs and compounds. This article reviews recent findings, mainly from the year of 2020 to present, about the roles of natural herbs and compounds in regulation of PPARs and their therapeutic effects on atherosclerosis. This article provides alternative strategies and theoretical basis for atherosclerosis therapy using natural herbs and compounds by targeting PPARs, and offers valuable information for researchers that are interested in developing novel PPAR modulators
Different physiological roles of insulin receptors in mediating nutrient metabolism in zebrafish
Insulin, the most potent anabolic hormone, is critical for somatic growth and metabolism in vertebrates. Type 2 diabetes, which is the primary cause of hyperglycemia. results from an inability of insulin to signal glycolysis and gluconeogenesis. Our previous study showed that double knockout of insulin receptor a (insra) and b (insrb) caused beta-cell hyperplasia and lethality from 5 to 16 days postfertilization (dpf) (Yang BY, Zhai G, Gong YL, Su JZ, Han D, Yin Z, Xie SQ. Sci Bull (Beijing) 62: 486-492, 2017). In this study, we characterized the physiological roles of Insra and Insrb. in somatic growth and fueling metabolism, respectively. A high-carbohydrate diet was provided for insulin receptor knockout zebrafish from 60 to 120 dpf to investigate phenotype inducement and amplification. We observed hyperglycemia in both insra-/- fish and insrb-/- fish. Impaired growth hormone signaling, increased visceral adiposity, and fatty liver were detected in insrb-/- fish, which are phenotypes similar to the lipodystrophy observed in mammals. More importantly, significantly diminished protein levels of P-PPAR alpha, P-STATS, and IGF-1 were also observed in insrb-/- fish. In insra-/- fish, we observed increased protein content and decreased lipid content of the whole body. Taken together, although Insra and Insrb show overlapping roles in mediating glucose metabolism through the insulin-signaling pathway, Insrb is more prone to promoting lipid catabolism and protein synthesis through activation of the growth hormone-signaling pathway, whereas Insra primarily acts to promote lipid synthesis via glucose utilization.</p
The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper
The Large High Altitude Air Shower Observatory (LHAASO) project is a new
generation multi-component instrument, to be built at 4410 meters of altitude
in the Sichuan province of China, with the aim to study with unprecedented
sensitivity the spec trum, the composition and the anisotropy of cosmic rays in
the energy range between 10 and 10 eV, as well as to act
simultaneously as a wide aperture (one stereoradiant), continuously-operated
gamma ray telescope in the energy range between 10 and eV. The
experiment will be able of continuously surveying the TeV sky for steady and
transient sources from 100 GeV to 1 PeV, t hus opening for the first time the
100-1000 TeV range to the direct observations of the high energy cosmic ray
sources. In addition, the different observables (electronic, muonic and
Cherenkov/fluorescence components) that will be measured in LHAASO will allow
to investigate origin, acceleration and propagation of the radiation through a
measurement of energy spec trum, elemental composition and anisotropy with
unprecedented resolution. The remarkable sensitivity of LHAASO in cosmic rays
physics and gamma astronomy would play a key-role in the comprehensive general
program to explore the High Energy Universe. LHAASO will allow important
studies of fundamental physics (such as indirect dark matter search, Lorentz
invariance violation, quantum gravity) and solar and heliospheric physics. In
this document we introduce the concept of LHAASO and the main science goals,
providing an overview of the project.Comment: This document is a collaborative effort, 185 pages, 110 figure
Soybean Trihelix Transcription Factors GmGT-2A and GmGT-2B Improve Plant Tolerance to Abiotic Stresses in Transgenic Arabidopsis
BACKGROUND:Trihelix transcription factors play important roles in light-regulated responses and other developmental processes. However, their functions in abiotic stress response are largely unclear. In this study, we identified two trihelix transcription factor genes GmGT-2A and GmGT-2B from soybean and further characterized their roles in abiotic stress tolerance. FINDINGS:Both genes can be induced by various abiotic stresses, and the encoded proteins were localized in nuclear region. In yeast assay, GmGT-2B but not GmGT-2A exhibits ability of transcriptional activation and dimerization. The N-terminal peptide of 153 residues in GmGT-2B was the minimal activation domain and the middle region between the two trihelices mediated the dimerization of the GmGT-2B. Transactivation activity of the GmGT-2B was also confirmed in plant cells. DNA binding analysis using yeast one-hybrid assay revealed that GmGT-2A could bind to GT-1bx, GT-2bx, mGT-2bx-2 and D1 whereas GmGT-2B could bind to the latter three elements. Overexpression of the GmGT-2A and GmGT-2B improved plant tolerance to salt, freezing and drought stress in transgenic Arabidopsis plants. Moreover, GmGT-2B-transgenic plants had more green seedlings compared to Col-0 under ABA treatment. Many stress-responsive genes were altered in GmGT-2A- and GmGT-2B-transgenic plants. CONCLUSION:These results indicate that GmGT-2A and GmGT-2B confer stress tolerance through regulation of a common set of genes and specific sets of genes. GmGT-2B also affects ABA sensitivity
- …