56 research outputs found

    Object-centric Learning with Cyclic Walks between Parts and Whole

    Full text link
    Learning object-centric representations from complex natural environments enables both humans and machines with reasoning abilities from low-level perceptual features. To capture compositional entities of the scene, we proposed cyclic walks between perceptual features extracted from CNN or transformers and object entities. First, a slot-attention module interfaces with these perceptual features and produces a finite set of slot representations. These slots can bind to any object entities in the scene via inter-slot competitions for attention. Next, we establish entity-feature correspondence with cyclic walks along high transition probability based on pairwise similarity between perceptual features (aka "parts") and slot-binded object representations (aka "whole"). The whole is greater than its parts and the parts constitute the whole. The part-whole interactions form cycle consistencies, as supervisory signals, to train the slot-attention module. We empirically demonstrate that the networks trained with our cyclic walks can extract object-centric representations on seven image datasets in three unsupervised learning tasks. In contrast to object-centric models attached with a decoder for image or feature reconstructions, our cyclic walks provide strong supervision signals, avoiding computation overheads and enhancing memory efficiency

    TaCA: Upgrading Your Visual Foundation Model with Task-agnostic Compatible Adapter

    Full text link
    Visual foundation models like CLIP excel in learning feature representations from extensive datasets through self-supervised methods, demonstrating remarkable transfer learning and generalization capabilities. A growing number of applications based on visual foundation models are emerging, including innovative solutions such as BLIP-2. These applications employ pre-trained CLIP models as upstream feature extractors and train various downstream modules to accomplish diverse tasks. In situations involving system upgrades that require updating the upstream foundation model, it becomes essential to re-train all downstream modules to adapt to the new foundation model, which is inflexible and inefficient. In this paper, we introduce a parameter-efficient and task-agnostic adapter, dubbed TaCA, that facilitates compatibility across distinct foundation models while ensuring enhanced performance for the new models. TaCA allows downstream applications to seamlessly integrate better-performing foundation models without necessitating retraining. We conduct extensive experimental validation of TaCA using different scales of models with up to one billion parameters on various tasks such as video-text retrieval, video recognition, and visual question answering. The results consistently demonstrate the emergent ability of TaCA on hot-plugging upgrades for visual foundation models. Codes and models will be available at https://github.com/TencentARC/TaCA

    Revisiting Vision Transformer from the View of Path Ensemble

    Full text link
    Vision Transformers (ViTs) are normally regarded as a stack of transformer layers. In this work, we propose a novel view of ViTs showing that they can be seen as ensemble networks containing multiple parallel paths with different lengths. Specifically, we equivalently transform the traditional cascade of multi-head self-attention (MSA) and feed-forward network (FFN) into three parallel paths in each transformer layer. Then, we utilize the identity connection in our new transformer form and further transform the ViT into an explicit multi-path ensemble network. From the new perspective, these paths perform two functions: the first is to provide the feature for the classifier directly, and the second is to provide the lower-level feature representation for subsequent longer paths. We investigate the influence of each path for the final prediction and discover that some paths even pull down the performance. Therefore, we propose the path pruning and EnsembleScale skills for improvement, which cut out the underperforming paths and re-weight the ensemble components, respectively, to optimize the path combination and make the short paths focus on providing high-quality representation for subsequent paths. We also demonstrate that our path combination strategies can help ViTs go deeper and act as high-pass filters to filter out partial low-frequency signals. To further enhance the representation of paths served for subsequent paths, self-distillation is applied to transfer knowledge from the long paths to the short paths. This work calls for more future research to explain and design ViTs from new perspectives.Comment: Accepted by ICCV 2023, oral presentatio

    BoxDiff: Text-to-Image Synthesis with Training-Free Box-Constrained Diffusion

    Full text link
    Recent text-to-image diffusion models have demonstrated an astonishing capacity to generate high-quality images. However, researchers mainly studied the way of synthesizing images with only text prompts. While some works have explored using other modalities as conditions, considerable paired data, e.g., box/mask-image pairs, and fine-tuning time are required for nurturing models. As such paired data is time-consuming and labor-intensive to acquire and restricted to a closed set, this potentially becomes the bottleneck for applications in an open world. This paper focuses on the simplest form of user-provided conditions, e.g., box or scribble. To mitigate the aforementioned problem, we propose a training-free method to control objects and contexts in the synthesized images adhering to the given spatial conditions. Specifically, three spatial constraints, i.e., Inner-Box, Outer-Box, and Corner Constraints, are designed and seamlessly integrated into the denoising step of diffusion models, requiring no additional training and massive annotated layout data. Extensive results show that the proposed constraints can control what and where to present in the images while retaining the ability of the Stable Diffusion model to synthesize with high fidelity and diverse concept coverage. The code is publicly available at https://github.com/Sierkinhane/BoxDiff.Comment: Accepted by ICCV 2023. The paper is still being revised for better organization and comparison. Code is available at: https://github.com/Sierkinhane/BoxDif

    XAGen: 3D Expressive Human Avatars Generation

    Full text link
    Recent advances in 3D-aware GAN models have enabled the generation of realistic and controllable human body images. However, existing methods focus on the control of major body joints, neglecting the manipulation of expressive attributes, such as facial expressions, jaw poses, hand poses, and so on. In this work, we present XAGen, the first 3D generative model for human avatars capable of expressive control over body, face, and hands. To enhance the fidelity of small-scale regions like face and hands, we devise a multi-scale and multi-part 3D representation that models fine details. Based on this representation, we propose a multi-part rendering technique that disentangles the synthesis of body, face, and hands to ease model training and enhance geometric quality. Furthermore, we design multi-part discriminators that evaluate the quality of the generated avatars with respect to their appearance and fine-grained control capabilities. Experiments show that XAGen surpasses state-of-the-art methods in terms of realism, diversity, and expressive control abilities. Code and data will be made available at https://showlab.github.io/xagen.Comment: Accepted to NeurIPS 2023, Project Page at https://showlab.github.io/xage

    Revisit Parameter-Efficient Transfer Learning: A Two-Stage Paradigm

    Full text link
    Parameter-Efficient Transfer Learning (PETL) aims at efficiently adapting large models pre-trained on massive data to downstream tasks with limited task-specific data. In view of the practicality of PETL, previous works focus on tuning a small set of parameters for each downstream task in an end-to-end manner while rarely considering the task distribution shift issue between the pre-training task and the downstream task. This paper proposes a novel two-stage paradigm, where the pre-trained model is first aligned to the target distribution. Then the task-relevant information is leveraged for effective adaptation. Specifically, the first stage narrows the task distribution shift by tuning the scale and shift in the LayerNorm layers. In the second stage, to efficiently learn the task-relevant information, we propose a Taylor expansion-based importance score to identify task-relevant channels for the downstream task and then only tune such a small portion of channels, making the adaptation to be parameter-efficient. Overall, we present a promising new direction for PETL, and the proposed paradigm achieves state-of-the-art performance on the average accuracy of 19 downstream tasks.Comment: 11 page

    Open-World Weakly-Supervised Object Localization

    Full text link
    While remarkable success has been achieved in weakly-supervised object localization (WSOL), current frameworks are not capable of locating objects of novel categories in open-world settings. To address this issue, we are the first to introduce a new weakly-supervised object localization task called OWSOL (Open-World Weakly-Supervised Object Localization). During training, all labeled data comes from known categories and, both known and novel categories exist in the unlabeled data. To handle such data, we propose a novel paradigm of contrastive representation co-learning using both labeled and unlabeled data to generate a complete G-CAM (Generalized Class Activation Map) for object localization, without the requirement of bounding box annotation. As no class label is available for the unlabelled data, we conduct clustering over the full training set and design a novel multiple semantic centroids-driven contrastive loss for representation learning. We re-organize two widely used datasets, i.e., ImageNet-1K and iNatLoc500, and propose OpenImages150 to serve as evaluation benchmarks for OWSOL. Extensive experiments demonstrate that the proposed method can surpass all baselines by a large margin. We believe that this work can shift the close-set localization towards the open-world setting and serve as a foundation for subsequent works. Code will be released at https://github.com/ryylcc/OWSOL

    Continual Learning for Image Segmentation with Dynamic Query

    Full text link
    Image segmentation based on continual learning exhibits a critical drop of performance, mainly due to catastrophic forgetting and background shift, as they are required to incorporate new classes continually. In this paper, we propose a simple, yet effective Continual Image Segmentation method with incremental Dynamic Query (CISDQ), which decouples the representation learning of both old and new knowledge with lightweight query embedding. CISDQ mainly includes three contributions: 1) We define dynamic queries with adaptive background class to exploit past knowledge and learn future classes naturally. 2) CISDQ proposes a class/instance-aware Query Guided Knowledge Distillation strategy to overcome catastrophic forgetting by capturing the inter-class diversity and intra-class identity. 3) Apart from semantic segmentation, CISDQ introduce the continual learning for instance segmentation in which instance-wise labeling and supervision are considered. Extensive experiments on three datasets for two tasks (i.e., continual semantic and instance segmentation are conducted to demonstrate that CISDQ achieves the state-of-the-art performance, specifically, obtaining 4.4% and 2.9% mIoU improvements for the ADE 100-10 (6 steps) setting and ADE 100-5 (11 steps) setting.Comment: Code: https://github.com/weijiawu/CisD

    Bridging Sensor Gaps via Single-Direction Tuning for Hyperspectral Image Classification

    Full text link
    Recently, some researchers started exploring the use of ViTs in tackling HSI classification and achieved remarkable results. However, the training of ViT models requires a considerable number of training samples, while hyperspectral data, due to its high annotation costs, typically has a relatively small number of training samples. This contradiction has not been effectively addressed. In this paper, aiming to solve this problem, we propose the single-direction tuning (SDT) strategy, which serves as a bridge, allowing us to leverage existing labeled HSI datasets even RGB datasets to enhance the performance on new HSI datasets with limited samples. The proposed SDT inherits the idea of prompt tuning, aiming to reuse pre-trained models with minimal modifications for adaptation to new tasks. But unlike prompt tuning, SDT is custom-designed to accommodate the characteristics of HSIs. The proposed SDT utilizes a parallel architecture, an asynchronous cold-hot gradient update strategy, and unidirectional interaction. It aims to fully harness the potent representation learning capabilities derived from training on heterologous, even cross-modal datasets. In addition, we also introduce a novel Triplet-structured transformer (Tri-Former), where spectral attention and spatial attention modules are merged in parallel to construct the token mixing component for reducing computation cost and a 3D convolution-based channel mixer module is integrated to enhance stability and keep structure information. Comparison experiments conducted on three representative HSI datasets captured by different sensors demonstrate the proposed Tri-Former achieves better performance compared to several state-of-the-art methods. Homologous, heterologous and cross-modal tuning experiments verified the effectiveness of the proposed SDT

    Attack is Good Augmentation: Towards Skeleton-Contrastive Representation Learning

    Full text link
    Contrastive learning, relying on effective positive and negative sample pairs, is beneficial to learn informative skeleton representations in unsupervised skeleton-based action recognition. To achieve these positive and negative pairs, existing weak/strong data augmentation methods have to randomly change the appearance of skeletons for indirectly pursuing semantic perturbations. However, such approaches have two limitations: 1) solely perturbing appearance cannot well capture the intrinsic semantic information of skeletons, and 2) randomly perturbation may change the original positive/negative pairs to soft positive/negative ones. To address the above dilemma, we start the first attempt to explore an attack-based augmentation scheme that additionally brings in direct semantic perturbation, for constructing hard positive pairs and further assisting in constructing hard negative pairs. In particular, we propose a novel Attack-Augmentation Mixing-Contrastive learning (A2^2MC) to contrast hard positive features and hard negative features for learning more robust skeleton representations. In A2^2MC, Attack-Augmentation (Att-Aug) is designed to collaboratively perform targeted and untargeted perturbations of skeletons via attack and augmentation respectively, for generating high-quality hard positive features. Meanwhile, Positive-Negative Mixer (PNM) is presented to mix hard positive features and negative features for generating hard negative features, which are adopted for updating the mixed memory banks. Extensive experiments on three public datasets demonstrate that A2^2MC is competitive with the state-of-the-art methods
    corecore