25 research outputs found

    Imaging and Targeting of the Hypoxia-inducible Factor 1-active Microenvironment

    Get PDF
    Human solid tumors contain hypoxic regions that have considerably lower oxygen tension than normal tissues. They are refractory to radiotherapy and anticancer chemotherapy. Although more than half a century has passed since it was suggested that tumour hypoxia correlates with poor treatment outcomes and contributes to recurrence of cancer, no fundamental solution to this problem has been found. Hypoxia-inducible factor-1(HIF-1) is the main transcription factor that regulates the cellular response to hypoxia. It induces various genes, whose function is strongly associated with malignant alteration of the entire tumour. The cellular changes induced by HIF-1 are extremely important therapeutic targets of cancer therapy, particularly in therapy against refractory cancers. Therefore, targeting strategies to overcome the HIF-1-active microenvironment are important for cancer therapy. To Target HIF-1-active/ hypoxic tumor cells, we developed a fusion protein drug, PTD-ODD-Procaspase-3 that selectively induces cell death in HIF-1-active/hypoxic cells. The drug consists of the following three functional domains: the protein transduction domain (PTD), which efficiently delivers the fusion protein to hypoxic tumor cells, the ODD domain, which has a VHL-mediated protein destruction motif of human HIF-1α protein and confers hypoxia-dependent stabilization to the fusion proteins, and the human procaspase-3 proenzyme responsible for the cytocidal activity of the protein drug. In vivo imaging systems capable of monitoring HIF-1 activity in transplanted human cancer cells in mice are useful in evaluating the efficiency of these drugs and in study of HIF-1-active tumor cells

    Noninvasive Tracking of Donor Cell Homing by Near-Infrared Fluorescence Imaging Shortly after Bone Marrow Transplantation

    Get PDF
    BACKGROUND: Many diseases associated with bone marrow transplantation (BMT) are caused by transplanted hematopoietic cells, and the onset of these diseases occurs after homing of donor cells in the initial phase after BMT. Noninvasive observation of donor cell homing shortly after transplantation is potentially valuable for improving therapeutic outcomes of BMT by diagnosing the early stages of these diseases. METHODOLOGY/PRINCIPAL FINDINGS: Freshly harvested near-infrared fluorescence-labeled cells were noninvasively observed for 24 h after BMT using a photon counting device to track their homing process. In a congenic BMT model, the homing of Alexa Fluor 750-labeled donor cells in the tibia was detected less than 1 h after BMT. In addition, subsequent cell distribution in an intraBM BMT model was successfully monitored for the first time using this method. In the allogeneic BMT model, T-cell depletion decreased the near-infrared fluorescence (NIRF) signals of the reticuloendothelial system. CONCLUSIONS/SIGNIFICANCE: This approach in several murine BMT models revealed that the transplanted cells homed within 24 h after transplantation. NIRF labeling is useful for tracking transplanted cells in the initial phase after BMT, and this approach can contribute to in vivo studies aimed at improving the therapeutic outcomes of BMT

    Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1alpha

    Get PDF
    PURPOSE: Hypoxia-inducible factor-1 (HIF-1) plays an important role in malignant tumour progression. For the imaging of HIF-1-active tumours, we previously developed a protein, POS, which is effectively delivered to and selectively stabilized in HIF-1-active cells, and a radioiodinated biotin derivative, (3-(123)I-iodobenzoyl)norbiotinamide ((123)I-IBB), which can bind to the streptavidin moiety of POS. In this study, we aimed to investigate the feasibility of the pretargeting method using POS and (123)I-IBB for rapid imaging of HIF-1-active tumours. METHODS: Tumour-implanted mice were pretargeted with POS. After 24 h, (125)I-IBB was administered and subsequently, the biodistribution of radioactivity was investigated at several time points. In vivo planar imaging, comparison between (125)I-IBB accumulation and HIF-1 transcriptional activity, and autoradiography were performed at 6 h after the administration of (125)I-IBB. The same sections that were used in autoradiographic analysis were subjected to HIF-1alpha immunohistochemistry. RESULTS: (125)I-IBB accumulation was observed in tumours of mice pretargeted with POS (1.6%ID/g at 6 h). This result is comparable to the data derived from (125)I-IBB-conjugated POS-treated mice (1.4%ID/g at 24 h). In vivo planar imaging provided clear tumour images. The tumoral accumulation of (125)I-IBB significantly correlated with HIF-1-dependent luciferase bioluminescence (R=0.84, p<0.01). The intratumoral distribution of (125)I-IBB was heterogeneous and was significantly correlated with HIF-1alpha-positive regions (R=0.58, p<0.0001). CONCLUSION: POS pretargeting with (123)I-IBB is a useful technique in the rapid imaging and detection of HIF-1-active regions in tumours

    In Vivo Imaging of HIF-Active Tumors by an Oxygen-Dependent Degradation Protein Probe with an Interchangeable Labeling System

    Get PDF
    Hypoxia-inducible factor (HIF) functions as a master transcriptional regulator for adaptation to hypoxia by inducing adaptive changes in gene expression for regulation of proliferation, angiogenesis, apoptosis and energy metabolism. Cancers with high expression of the alpha subunit of HIF (HIFα) are often malignant and treatment-resistant. Therefore, the development of a molecular probe that can detect HIF activity has great potential value for monitoring tumor hypoxia. HIF prolyl hydroxylases (HPHDs) act as oxygen sensors that regulate the fate of HIFα protein through its oxygen-dependent degradation (ODD) domain. We constructed a recombinant protein PTD-ODD-HaloTag (POH) that is under the same ODD regulation as HIFα and contains protein transduction domain (PTD) and an interchangeable labeling system. Administration of near-infrared fluorescently labeled POH (POH-N) to mouse models of cancers allowed successful monitoring of HIF-active regions. Immunohistochemical analysis for intratumoral localization of POH probe revealed its specificity to HIF-active cells. Furthermore, lack of the PTD domain or a point mutation in the ODD domain abrogated the specificity of POH-N to HIF-active cells. Overall results indicate that POH is a practical probe specific to HIF-active cell in cancers and suggest its large potential for imaging and targeting of HIF-related diseases

    A Pilot Study of Transbronchial Biopsy Using Endobronchial Ultrasonography with a Guide Sheath in the Diagnosis of Peripheral Pulmonary Lesions in Patients with Interstitial Lung Disease

    No full text
    The occurrence of interstitial lung disease (ILD) with peripheral pulmonary lesions (PPLs) is closely linked to the development of lung cancer. Yet, the best diagnostic approach for identifying PPLs in patients with ILD remains elusive. This study retrospectively investigated the application of transbronchial biopsy (TBB) using endobronchial ultrasonography with a guide sheath (EBUS-GS) to the effective and safe diagnosis of PPLs when compared with conventional TBB. The study sample included a consecutive series of 19 patients with ILD who underwent conventional TBB or TBB using EBUS-GS at Tosei General Hospital between 1 April 2013 and 31 October 2015. The two techniques were compared based on diagnostic yield and associated complications. The diagnostic yield of EBUS-GS TBB was significantly higher than that of conventional TBB (p = 0.009), especially for small lesions (&le;20 mm), lesions located in the lower lobes, lesions with a positive bronchus sign, and lesions visible by chest radiography (p = 0.010, p = 0.022, p = 0.006, and p = 0.002, respectively). There were no significant differences in complication rates. Therefore, EBUS-GS is an effective alternative for the diagnosis of PPLs in patients with ILD, without additional complications

    Endobronchial Ultrasonography with a Guide Sheath Transbronchial Biopsy for Diagnosing Peripheral Pulmonary Lesions within or near Fibrotic Lesions in Patients with Interstitial Lung Disease

    No full text
    In patients with interstitial lung disease (ILD), the most frequent locations of lung cancer are within or near fibrotic lesions. However, the diagnostic yield for peripheral pulmonary lesions (PPLs) within or near fibrotic lesions using endobronchial ultrasonography with a guide sheath transbronchial biopsy (EBUS-GS TBB) may be unsatisfactory compared to that for PPLs distant from fibrotic lesions because of the difficulty in reaching the lesions. Our objectives were to evaluate the yield for PPLs using EBUS-GS TBB according to the proximity of PPLs to fibrotic lesions and to determine factors affecting the yield for PPLs. We retrospectively investigated 323 consecutive lesions using EBUS-GS TBB between 1 November 2014 and 31 December 2016. We identified PPLs with ILD in such lesions. PPLs with ILD were divided into PPLs within or near fibrotic lesions which met the criterion of PPLs, and of fibrotic lesions overlapping each other (PPLs-FL) and those distant from fibrotic lesions, which met the criterion of PPLs and the area of fibrotic lesion not overlapping each other (PPLs-NFL). Of the 323 lesions, 55 were included (31 PPLs-FL and 24 PPLs-NFL). The diagnostic yield for PPLs-FL was significantly lower than for PPLs-NFL (45.2% vs. 83.3%, p = 0.004). Multivariate analysis revealed that PPLs-NFL (odds ratio (OR) = 7.509) and a probe position within the lesion (OR = 4.172) were significant factors affecting diagnostic yield. Lesion’s positional relation to fibrotic lesions and the probe position were important factors affecting the successful diagnosis via EBUS-GS TBB in these patients

    In vivo imaging of brain ischemia using an oxygen-dependent degradative fusion protein probe.

    Get PDF
    Within the ischemic penumbra, blood flow is sufficiently reduced that it results in hypoxia severe enough to arrest physiological function. Nevertheless, it has been shown that cells present within this region can be rescued and resuscitated by restoring perfusion and through other protective therapies. Thus, the early detection of the ischemic penumbra can be exploited to improve outcomes after focal ischemia. Hypoxia-inducible factor (HIF)-1 is a transcription factor induced by a reduction in molecular oxygen levels. Although the role of HIF-1 in the ischemic penumbra remains unknown, there is a strong correlation between areas with HIF-1 activity and the ischemic penumbra. We recently developed a near-infrared fluorescently labeled-fusion protein, POH-N, with an oxygen-dependent degradation property identical to the alpha subunit of HIF-1. Here, we conduct in vivo imaging of HIF-active regions using POH-N in ischemic brains after transient focal cerebral ischemia induced using the intraluminal middle cerebral artery occlusion technique in mice. The results demonstrate that POH-N enables the in vivo monitoring and ex vivo detection of HIF-1-active regions after ischemic brain injury and suggest its potential in imaging and drug delivery to HIF-1-active areas in ischemic brains
    corecore