74 research outputs found

    Light propagation in non-trivial QED vacua

    Get PDF
    Within the framework of effective action QED, we derive the light cone condition for homogeneous non-trivial QED vacua in the geometric optics approximation. Our result generalizes the ``unified formula'' suggested by Latorre, Pascual and Tarrach and allows for the calculation of velocity shifts and refractive indices for soft photons travelling through these vacua. Furthermore, we clarify the connection between the light velocity shift and the scale anomaly. This study motivates the introduction of a so-called effective action charge that characterizes the velocity modifying properties of the vacuum. Several applications are given concerning vacuum modifications caused by, e.g., strong fields, Casimir systems and high temperature.Comment: 13 pages, REVTeX, 3 figures, to appear in Phys. Rev.

    Glassiness and constrained dynamics of a short-range non-disordered spin model

    Full text link
    We study the low temperature dynamics of a two dimensional short-range spin system with uniform ferromagnetic interactions, which displays glassiness at low temperatures despite the absence of disorder or frustration. The model has a dual description in terms of free defects subject to dynamical constraints, and is an explicit realization of the ``hierarchically constrained dynamics'' scenario for glassy systems. We give a number of exact results for the statics of the model, and study in detail the dynamical behaviour of one-time and two-time quantities. We also consider the role played by the configurational entropy, which can be computed exactly, in the relation between fluctuations and response.Comment: 10 pages, 9 figures; minor changes, references adde

    Implications of Space-Time foam for Entanglement Correlations of Neutral Kaons

    Full text link
    The role of CPTCPT invariance and consequences for bipartite entanglement of neutral (K) mesons are discussed. A relaxation of CPTCPT leads to a modification of the entanglement which is known as the ω\omega effect. The relaxation of assumptions required to prove the CPTCPT theorem are examined within the context of models of space-time foam. It is shown that the evasion of the EPR type entanglement implied by CPTCPT (which is connected with spin statistics) is rather elusive. Relaxation of locality (through non-commutative geometry) or the introduction of decoherence by themselves do not lead to a destruction of the entanglement. So far we find only one model which is based on non-critical strings and D-particle capture and recoil that leads to a stochastic contribution to the space-time metric and consequent change in the neutral meson bipartite entanglement. The lack of an omega effect is demonstrated for a class of models based on thermal like baths which are generally considered as generic models of decoherence

    Decoherence and CPT Violation in a Stringy Model of Space-Time Foam

    Full text link
    I discuss a model inspired from the string/brane framework, in which our Universe is represented as a three brane, propagating in a bulk space time punctured by D0-brane (D-particle) defects. As the D3-brane world moves in the bulk, the D-particles cross it, and from an effective observer on D3 the situation looks like a ``space-time foam'' with the defects ``flashing'' on and off (``D-particle foam''). The open strings, with their ends attached on the brane, which represent matter in this scenario, can interact with the D-particles on the D3-brane universe in a topologically non-trivial manner, involving splitting and capture of the strings by the D0-brane defects. Such processes are described by logarithmic conformal field theories on the world-sheet. Physically, they result in effective decoherence of the string matter on the D3 brane, and as a result, of CPT Violation, but of a type that implies an ill-defined nature of the effective CPT operator. Due to electric charge conservation, only electrically neutral (string) matter can exhibit such interactions with the D-particle foam. This may have unique, experimentally detectable, consequences for electrically-neutral entangled quantum matter states on the brane world, in particular the modification of the pertinent EPR Correlation of neutral mesons in a meson factory.Comment: 41 pages Latex, five eps figures incorporated. Uses special macro

    Radiative Decays, Nonet Symmetry and SU(3) Breaking

    Get PDF
    We re-examine the problem of simultaneously describing in a consistent way all radiative and leptonic decays of light mesons (V -> P gamma, P -> V gamma, P -> gamma gamma, V -> e^+ e^-). For this purpose, we rely on the Hidden Local Symmetry model in both its anomalous and non--anomalous sectors. We show that the SU(3) symmetry breaking scheme proposed by Bando, Kugo and Yamawaki, supplemented with nonet symmetry breaking in the pseudoscalar sector, allows one to reach a nice agreement with all data, except for the K^{*+/-} radiative decay. An extension of this breaking pattern allows one to account for this particular decay mode too. Considered together, the whole set of radiative decays provides a pseudoscalar mixing angle theta_P ~ -11^o and a value for theta_V which is ~ 3^o from that of ideal mixing. We also show that it is impossible, in a practical sense, to disentangle the effects of nonet symmetry breaking and those of glue inside the eta', using only light meson decays.Comment: 36 pages. Published versio

    The U(1)A Anomaly and QCD Phenomenology

    No full text
    The role of the U(1)A anomaly in QCD phenomenology is reviewed, focus- ing on the relation between quark dynamics and gluon topology. Topics covered include a generalisation of the Witten-Veneziano formula for the mass of the η′, the determina- tion of pseudoscalar meson decay constants, radiative pseudoscalar decays and the U(1)A Goldberger-Treiman relation. Sum rules are derived for the proton and photon structure functions g1p and g1γ measured in polarised deep-inelastic scattering. The first moment sum rule for g1p (the ‘proton spin’ problem) is confronted with new data from COMPASS and HERMES on the deuteron structure function and shown to be quantitatively explained in terms of topological charge screening. Proposals for experiments on semi-inclusive DIS and polarised two-photon physics at future ep and high-luminosity e+e− colliders are discussed
    corecore