21 research outputs found

    Acid and Acid-Alkali Treatment Methods of Al-Chloride Solution Obtained by the Leaching of Coal Fly Ash to Produce Sandy Grade Alumina

    Get PDF
    Sandy grade alumina is a valuable intermediate material that is mainly produced by the Bayer process and used for manufacturing primary metallic aluminum. Coal fly ash is generated in coal-fired power plants as a by-product of coal combustion that consists of submicron ash particles and is considered to be a potentially hazardous technogenic waste. The present paper demonstrates that the Al-chloride solution obtained by leaching coal fly ash can be further processed to obtain sandy grade alumina, which is essentially suitable for metallic aluminum production. The novel process developed in the present study involves the production of amorphous alumina via the calcination of aluminium chloride hexahydrate obtained by salting-out from acid Al-Cl liquor. Following this, alkaline treatment with further Al2 O3 dissolution and recrystallization as Al(OH)3 particles is applied, and a final calcination step is employed to obtain sandy grade alumina with minimum impurities. The process does not require high-pressure equipment and reutilizes the alkaline liquor and gibbsite particles from the Bayer process, which allows the sandy grade alumina production costs to be to significantly reduced. The present article also discusses the main technological parameters of the acid treatment and the amounts of major impurities in the sandy grade alumina obtained by the different (acid and acid-alkali) methods. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Russian Science Foundation, RSF: 18-79-00305Funding: This work was financially supported by the Russian Science Foundation Project No. 18-79-00305

    Obtaining of Maghemite Containing Red Mud for Effective As(V) Adsorption

    Get PDF
    This paper describes the studies of the use of red muds as adsorbents for cleaning solutions from As(V). The red mud is a waste that contains a large amount of iron oxides and hydroxides, which are excellent adsorbents of arsenic, especially those possessing magnetic properties and large specific surface area. The purpose of the experiment was to study the possibility of obtaining an effective adsorbent by direct extraction of alumina from bauxite using the caustic alkali fusion method and optimization of the process. The main iron-containing phase of the red muds obtained by fusing bauxite with caustic alkali was maghemite, which has a large specific surface area. Arsenic adsorption experiments were carried out using red muds obtained through bauxite alkali fusing at different temperatures and time of fusion, as well as the mass ratio of caustic alkali to bauxite. The red muds obtained by fusing bauxite with caustic alkali at 400∘ C and NaOH to bauxite mass ration 1.5 within 70 minutes have the highest effectiveness removing arsenic. Their As(V) uptake capacity was over than 37 mg/g. Keywords: red mud, maghemite, nanoparticles, As(V) adsorption, optimizatio

    Leaching kinetics of arsenic sulfide-containing materials by copper sulfate solution

    Get PDF
    The overall decrease in the quality of mineral raw materials, combined with the use of arsenic-containing ores, results in large amounts of various intermediate products containing this highly toxic element. The use of hydrometallurgical technologies for these materials is complicated by the formation of multicomponent solutions and the difficulty of separating copper from arsenic. Previously, for the selective separation of As from copper–arsenic intermediates a leaching method in the presence of Cu(II) ions was proposed. This paper describes the investigation of the kinetics of arsenic sulfide-containing materials leaching by copper sulfate solution. The cakes after leaching of arsenic trisulfide with a solution of copper sulfate were described using methods such as X-ray diffraction spectrometry (XRD), X-ray fluorescence spectrometry (XRF), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy analysis (EDS). The effect of temperature (70–90 °C), the initial concentration of CuSO4 (0.23–0.28 M) and the time on the As recovery into the solution was studied. The process temperature has the greatest effect on the kinetics, while an increase in copper concentration from 0.23 to 0.28 M effects an increase in As transfer into solution from 93.2% to 97.8% for 120 min of leaching. However, the shrinking core model that best fits the kinetic data suggests that the process occurs by the intra-diffusion mode with the average activation energy of 44.9 kJ/mol. Using the time-to-a-given-fraction kinetics analysis, it was determined that the leaching mechanism does not change during the reaction. The semi-empirical expression describing the reaction rate under the studied conditions can be written as follows: 1/3ln(1 − X) + [(1 − X) − 1/3 − 1] = 4,560,000Cu3.61e−44900/RT t. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.10.7347.2017/8.9Russian Science Foundation, RSF: 18-19-00186Funding: The research was funded by the Russian Science Foundation, grant number 18-19-00186. The SEM/EDS analyses were funded by State Assignment, grant number 10.7347.2017/8.9

    Effect of preliminary alkali desilication on ammonia pressure leaching of low-grade copper–silver concentrate

    Get PDF
    Ammonia leaching is a promising method for processing low-grade copper ores, especially those containing large amounts of oxidized copper. In this paper, we study the effect of Si-containing minerals on the kinetics of Cu and Ag leaching from low-grade copper concentrates. The results of experiments on the pressure leaching of the initial copper concentrate in an ammonium/ammonium-carbonate solution with oxygen as an oxidizing agent are in good agreement with the shrinking core model in the intra-diffusion mode: in this case, the activation energies were 53.50 kJ/mol for Cu and 90.35 kJ/mol for Ag. Energy-dispersive X-ray spectroscopy analysis (EDX) analysis showed that reagent diffusion to Cu-bearing minerals can be limited by aluminosilicate minerals of the gangue. The recovery rate for copper and silver increases significantly after a preliminary alkaline desilication of the concentrate, and the new shrinking core model is the most adequate, showing that the process is limited by diffusion through the product layer and interfacial diffusion. The activation energy of the process increases to 86.76 kJ/mol for Cu and 92.15 kJ/mol for Ag. Using the time-to-a-given-fraction method, it has been shown that a high activation energy is required in the later stages of the process, when the most resistant sulfide minerals of copper and silver apparently remain. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Russian Science Foundation, RSF: 0836-2020-0020Funding: This work was financially supported by the Russian Science Foundation Project No. The SEM-EDX analyses were funded by State Assignment, grant number 0836-2020-0020

    Concentration of rare earth elements (Sc, y, la, ce, nd, sm) in bauxite residue (red mud) obtained by water and alkali leaching of bauxite sintering dust

    Get PDF
    One of the potential sources of rare-earth elements (REE) is the industrial waste known as red mud (bauxite residue), in which the majority of REE from the initial bauxite are concentrated via the Bayer process. Therefore, the studies of the subject, both in Russia and outside, focus almost exclusively on red mud processing. This article looks into the possibility of REE concentration into red mud by leaching an intermediate product of the bauxite sintering process at Russian alumina refineries, namely electrostatic precipitator (ESP) dust. The experimental works were performed by X-ray diffraction (XRD)and electron probe microanalysis (EPMA) of the sinter and sinter dust. The determination of major and rare-earth elements in the sinter from the rotary kilns and in the ESP dust before and after leaching was carried out by X-ray fluorescence (XRF) and plasma mass spectrometry (ICP-MS). The study showed that it is possible to obtain red mud that contains three times more REE than traditional waste red mud after two-stage leaching ESP dust in the water at 95◦ C followed by leaching in an alkaline-aluminate liquor at 240◦ C. The shrinking core model was used to study the kinetics of leaching of the original ESP dust and water-treated dust in alkaline-aluminate liquor. The study showed the change in the limiting stage of the alkaline leaching process after water treatment, with the activation energy growing from 24.98 to 33.19 kJ/mol. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Russian Science Foundation, RSF: 18-19-00186Funding: The research was funded by the Russian Science Foundation, grant number 18-19-00186

    Leaching kinetics of sulfides from refractory gold concentrates by nitric acid

    Get PDF
    The processing of refractory gold-containing concentrates by hydrometallurgical methods is becoming increasingly important due to the depletion of rich and easily extracted mineral resources, as well as due to the need to reduce harmful emissions from metallurgy, especially given the high content of arsenic in the ores. This paper describes the investigation of the kinetics of HNO3 leaching of sulfide gold-containing concentrates of the Yenisei ridge (Yakutia, Russia). The effect of temperature (70–85 °C), the initial concentration of HNO3 (10–40%) and the content of sulfur in the concentrate (8.22–22.44%) on the iron recovery into the solution was studied. It has been shown that increasing the content of S in the concentrate from 8.22 to 22.44% leads to an average of 45% increase in the iron recovery across the entire range temperatures and concentrations of HNO3 per one hour of leaching. The leaching kinetics of the studied types of concentrates correlates well with the new shrinking core model, which indicates that the reaction is regulated by interfacial diffusion and diffusion through the product layer. Elemental S is found on the surface of the solid leach residue, as confirmed by XRD and SEM/EDS analysis. The apparent activation energy is 60.276 kJ/mol. The semi-empirical expression describing the reaction rate under the studied conditions can be written as follows: 1/3ln(1 - X) + [(1 - X)-1/3 - 1] = 87.811(HNO3)0.837(S)2.948e-60276/RT·t. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Funding: The research was funded by the Russian Science Foundation, grant number 18-19-00186. The SEM/EDS and microprobe analysis were funded by State Assignment, grant number 11.4797.2017/8.9

    Obtaining of Pigment-Quality Magnetite from Sintering Process Red Mud

    Full text link
    The limited availability of high-quality bauxite and, at the same time, the formation of a considerable amount of harmful red mud (bauxite residue) causes to develop cost-effective technologies for bauxite processing. Selective separation of iron from red mud allows solving this problem and producing marketable products in the form of pigment-quality magnetite. In this context, the possibility of the pigment-quality magnetite obtaining by the interaction of freshly precipitated iron hydroxide (III) of the sintering process red mud with ferrous iron ions in an alkaline medium is studied. It was found that the optimal parameters of the process are: temperature = 90 C; duration = 4 hours; a ratio of ferrous iron to stoichiometric quantity = 70 %. The yield of the magnetic concentrate under optimal conditions was 69.3 %, and the content of magnetite in concentrate was 47.7 %. © Published under licence by IOP Publishing Ltd

    Kinetics Study of Al Extraction from Desilicated Coal Fly Ash by NaOH at Atmospheric Pressure

    Full text link
    The most promising source of alumina in the 21st century is the coal fly ash (CFA) waste of coal-fired thermal plants. The methods of alumina extraction from CFA are often based on the pressure alkaline or acid leaching or preliminary roasting with different additives followed by water leaching. The efficiency of the alumina extraction from CFA under atmospheric pressure leaching is low due to the high content of acid-insoluble alumina phase mullite (3Al2O3·2SiO2). This research for the first time shows the possibility of mullite leaching under atmospheric pressure after preliminary desilication using high liquid to solid ratios (L:S ratio) and Na2O concentration. The analysis of the desilicated CFA (DCFA) chemical and phase composition before and after leaching has been carried out by inductively coupled plasma optical emission spectrometry (ICP-OES) and X-ray diffraction (XRD). The morphology and elemental composition of solid product particles has been carried out by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). An auto-mated neural network and a shrinking core model (SCM) were used to evaluate experimental data. The Al extraction efficiency from DCFA has been more than 84% at T = 120◦C, leaching time 60 min, the L/S ratio > 20, and concentration of Na2O-400 g L−1. The kinetics analysis by SCM has shown that the surface chemical reaction controls the leaching process rate at T < 110◦C, and, at T > 110◦C after 15 min of leaching, the process is limited by diffusion through the product layer, which can be represented by titanium compounds. According to the SEM-EDX analysis of the solid residue, the magnetite spheres and mullite acicular particles were the main phases that remained after NaOH leaching. The spheric agglomerates of mullite particles with non-porous surface have also been found. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This work was funded by State Assignment, grant № 075-03-2021-051/5. The method of Al content analysis in CFA by ICP-OES was funded by a Ministry of Science and Higher Education of the Russian Federation scientific topic № 0137-2019-0023

    Complete extraction of amorphous aluminosilicate from coal fly ash by alkali leaching under atmospheric pressure

    Full text link
    One of the potential sources of alumina and mesoporous silica is the coal-fired thermal plants waste known as the coal fly ash (CFA). The studies of the alumina extraction from CFA are often focused on the preliminary desilication, but the efficiency of the alkali desilication is low due to formation of the desilication product—Na6 [Al6 Si6 O24 ]·Na2 X (DSP). This research is focused on the possibility of CFA desilication without formation of DSP using a leaching process with higher liquid to solid ratios (L/S) and alkali concentrations. The experimental data were analyzed using an artificial neural network (ANN) machine learning method and a shrinking core model (SCM). The investigation of the CFA morphology, chemical and phase composition before and after leaching were carried out by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), inductively coupled plasma optical emission spectrometry (ICP-OES) and X-ray diffraction (XRD). The present work shows that it is possible to avoid formation of DSP if using the L/S ratio >20 and concentration of Na2 O—400 g/L during CFA leaching. The kinetics analysis by SCM showed that the process is limited by the surface chemical reaction at T <100◦ C, and by diffusion through the product layer at T >100◦ C, respectively. The SEM images of the solid residue after NaOH leaching under conditions that prevent the DSP formation show mullite particles with an acicular structure. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.This research was funded by Russian State Assignment, grant number 0836-2020-0020

    High‐Selective Extraction of Scandium (Sc) from Bauxite Residue (Red Mud) by Acid Leaching with MgSO4

    Full text link
    Bauxite residue, also known as red mud (RM), from alumina production is the most promising technogenic material for the production of scandium (Sc) and other rare earth elements (REEs). Conveniently, RM is processed by using a strong acid (pH < 2.5), which lead to co‐dissolution of iron and other undesirable major components. In this work, for the first time, the possibility of selective extraction of scandium from red mud by using highly diluted acid (pH > 4) in the presence of MgSO4 was shown. The effect of temperature (40–80 °C), time (0–60 min), pH (2–5), and the MgSO4 concentration (12–36 g L−1) on Sc extraction efficiency was evaluated. It was shown that Sc extraction was higher than 63% even at a pH of 4, at 80 °C, after 1 h, while more than 80% could be extracted at a pH of 2. Iron extraction reduced from 7.7 to 0.03% by increasing the pH from 2 to 4. The kinetics study using the shrinking core model (SCM) has shown that diffusion through a product layer is a rate‐limiting stage of the process at high temperatures (>60 °C) and low pH (<3), whereas, at lower temperatures and higher pH values, the leaching rate is limited by diffusion through the liquid film. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.This work was funded by State Assignment, grant no. 075-03-2021-051/5 (FEUZ-2021-0017). The method for determining the content of REEs in the solution after leaching by ICP-MS was funded by the Project of the State Assignment (Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, № FMUS-2019-24)
    corecore