6 research outputs found

    Investigation of local soil resistance on suction caissons at capacity in undrained clay under combined loading

    Get PDF
    Winkler modelling offers a flexible and computationally efficient framework for estimating suction caisson capacity. However, there is a limited understanding of the local soil resistance acting on caissons at capacity under combined six degrees-of-freedom (6DoF) loading, which is essential for accurately estimating caisson failure envelopes. Furthermore, existing simplified design models for caissons cannot assess capacity under non-planar lateral and moment loading, which is common in offshore wind applications. To address these limitations, this paper presents a comprehensive three-dimensional (3D) finite element analysis (FEA) study, which investigates the local soil resistance acting on the caisson at capacity in undrained clay under combined 6DoF loading. The paper introduces the concept of ‘soil reaction failure envelopes’ to characterise the interactions between soil reactions at capacity. Closed-form formulations are derived to approximate these soil reaction failure envelopes. An elastoplastic Winkler model is then developed, incorporating linear elastic perfectly plastic soil reactions based on these formulations. The results demonstrate that the Winkler model can provide efficient and reasonably accurate estimations of caisson capacity under combined 6DoF loading, even for irregular soil profiles that pose much uncertainty and challenges to existing macro-element models

    A systematic framework for formulating convex failure envelopes in multiple loading dimensions

    Get PDF
    The failure envelope approach is widely used to assess the ultimate capacity of shallow foundations for combined loading, and to develop foundation macro-element models. Failure envelopes are typically determined by fitting appropriate functions to a set of discrete failure load data, determined either experimentally or numerically. However, current procedures to formulate failure envelopes tend to be ad hoc, and the resulting failure envelopes may not have the desirable features of being convex and well-behaved for the entire domain of interest. This paper describes a new systematic framework to determine failure envelopes – based on the use of sum of squares convex polynomials – that are guaranteed to be convex and well-behaved. The framework is demonstrated by applying it to three data sets for failure load combinations (vertical load, horizontal load and moment) for shallow foundations on clay. An example foundation macro-element model based on the proposed framework is also described

    Assessment of numerical procedures for determining shallow foundation failure envelopes

    Get PDF
    The failure envelope approach is commonly used to assess the capacity of shallow foundations under combined loading, but there is limited published work that compares the performance of various numerical procedures for determining failure envelopes. This paper addresses this issue by carrying out a detailed numerical study to evaluate the accuracy, computational efficiency and resolution of these numerical procedures. The procedures evaluated are the displacement probe test, the load probe test, the swipe test (referred to in this paper as the single swipe test) and a less widely used procedure called the sequential swipe test. Each procedure is used to determine failure envelopes for a circular surface foundation and a circular suction caisson foundation under planar vertical, horizontal and moment (VHM) loading for a linear elastic, perfectly plastic von Mises soil. The calculations use conventional, incremental-iterative finite-element analysis (FEA) except for the load probe tests, which are performed using finite-element limit analysis (FELA). The results demonstrate that the procedures are similarly accurate, except for the single swipe test, which gives a load path that under-predicts the failure envelope in many of the examples considered. For determining a complete VHM failure envelope, the FEA-based sequential swipe test is shown to be more efficient and to provide better resolution than the displacement probe test, while the FELA-based load probe test is found to offer a good balance of efficiency and accuracy

    Investigation of local soil resistance on suction caissons at capacity in undrained clay under combined loading

    Get PDF
    Winkler modelling offers a flexible and computationally efficient framework for estimating suction caisson capacity. However, there is a limited understanding of the local soil resistance acting on caissons at capacity under combined six degrees-of-freedom (6DoF) loading, which is essential for accurately estimating caisson failure envelopes. Furthermore, existing simplified design models for caissons cannot assess capacity under non-planar lateral and moment loading, which is common in offshore wind applications. To address these limitations, this paper presents a comprehensive three-dimensional (3D) finite element analysis (FEA) study, which investigates the local soil resistance acting on the caisson at capacity in undrained clay under combined 6DoF loading. The paper introduces the concept of ‘soil reaction failure envelopes’ to characterise the interactions between soil reactions at capacity. Closed-form formulations are derived to approximate these soil reaction failure envelopes. An elastoplastic Winkler model is then developed, incorporating linear elastic perfectly plastic soil reactions based on these formulations. The results demonstrate that the Winkler model can provide efficient and reasonably accurate estimations of caisson capacity under combined 6DoF loading, even for irregular soil profiles that pose much uncertainty and challenges to existing macro-element models

    A Winkler model for suction caisson foundations in homogeneous and non-homogeneous linear elastic soil

    Full text link
    Suction caisson foundations provide options for new foundation systems for offshore structures, particularly for wind turbine applications. During the foundation design process, it is necessary to make reliable predictions of the stiffness of the foundation, since this has an important influence on the dynamic performance of the overall support structure. The dynamic characteristics of the structure, in turn, influence its fatigue life. This paper describes a thermodynamically consistent Winkler model, called OxCaisson, that delivers computationally efficient estimates of foundation stiffness for caissons installed in homogeneous and non-homogeneous linear elastic soil, for general six degrees-of-freedom loading. OxCaisson is capable of delivering stiffness predictions that are comparable to those computed with three-dimensional finite-element analysis, but at a much lower computational cost. Therefore, the proposed model is suited to design applications where both speed and accuracy are essential, such as large-scale fatigue assessments of offshore wind farm structures. The paper demonstrates that the OxCaisson model can also be applied to short, rigid monopile foundations
    corecore