1,295 research outputs found

    Possible Verification of Tilted Anisotropic Dirac Cone in \alpha-(BEDT-TTF)_2 I_3 Using Interlayer Magnetoresistance

    Full text link
    It is proposed that the presence of a tilted and anisotropic Dirac cone can be verified using the interlayer magnetoresistance in the layered Dirac fermion system, which is realized in quasi-two-dimensional organic compound \alpha-(BEDT-TTF)_2 I_3. Theoretical formula is derived using the analytic Landau level wave functions and assuming local tunneling of electrons. It is shown that the resistivity takes the maximum in the direction of the tilt if anisotropy of the Fermi velocity of the Dirac cone is small. The procedure is described to determine the parameters of the tilt and anisotropy.Comment: 4 pages, 4 figures, corrected Fig.

    Preparation and characterisation of titanium dioxide produced from Ti-salt flocculated sludge in water treatment

    Full text link
    During the past few years, titanium salts were investigated as alternative coagulants for the removal of organic matter of different molecular sizes in contaminated water. The flocculation efficiency of Ti-salt was comparable to those of FeCl3 and Al2(SO4)3 salts, commonly used coagulants. Incinerated sludge-TiO2 showed higher surface area and photocatalytic activity than commercially available TiO2. Metal-doped forms were produced by adding coagulant aids such as iron (Fe-), aluminium (Al-) and (Ca-) calcium salts during Ti-salt flocculation to increase pH. Ca- and Al- doped TiO2 showed very high photocatalytic activity compared to Fe-doped TiO2. When tested in a pilot scale plant for treatment of dye wastewater to check practical feasibility of the novel process, the removal ratio of the chemical oxygen demand was comparable to those of commonly used coagulants but the settling of sludge was faster. The TiO2 generated after sludge incineration showed a high photocatalytic activity for degradation of volatile organic compounds and increased the rate of hydrogen production by water photosplitting. TiCl4 coagulant and TiO2 produced from different water sources with different concentrations had low acute toxicity compared to heavy metals and commercial TiO2 when examined based on D. Magna mortality. This paper presents the production, characterisation and the photoactivity of TiO2 produced from Ti-salt flocculated sludge. Different case studies are discussed to highlighted recent advances in this field

    Dynamics of an electron in finite and infinite one dimensional systems in presence of electric field

    Full text link
    We study,numerically, the dynamical behavior of an electron in a two site nonlinear system driven by dc and ac electric field separately. We also study, numerically, the effect of electric field on single static impurity and antidimeric dynamical impurity in an infinite 1D chain to find the strength of the impurities. Analytical arguments for this system have also been given.Comment: File Latex, 8 Figures available on reques

    Electric Conductivity of the Zero-gap Semiconducting State in Alpha-(BEDT-TTF)2I3 Salt

    Full text link
    The electric conductivity which reveals the zero gap semiconducting (ZGS) state has been investigated as the function of temperature TT and life time τ\tau in order to understand the ZGS state in quarter-filled α\alpha-(BEDT-TTF)2_2I3_3 salt with four sites in the unit cell. By treating τ\tau as a parameter and making use of the one-loop approximation, it is found that the conductivity is proportional to TT and τ\tau for kB≫ℏ/τk_B\gg\hbar/\tau and independent of TT and τ\tau for kBT≪ℏ/τk_B T\ll\hbar/\tau. Further the conductivity being independent of TT in the ZGS state is examined in terms of Born approximation for the impurity cattering.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Synthesis and NOx removal performance of anatase S-TiO2/g-CN heterojunction formed from dye wastewater sludge.

    Full text link
    In this study, sludges generated from Ti-based flocculation of dye wastewater were used to retrieve photoactive titania (S-TiO2). It was heterojunctioned with graphitic carbon nitride (g-CN) to augment photoactivity under UV/visible light irradiance. Later the as-prepared samples were utilized to remove nitrogen oxides (NOx) in the atmospheric condition through photocatalysis. Heterojunction between S-TiO2 and g-CN was prepared through facile calcination (@550 °C) of S-TiO2 and melamine mix. Advanced sample characterization was carried out and documented extensively. Successful heterojunction was confirmed from the assessment of morphological and optical attributes of the samples. Finally, the prepared samples' level of photoactivity was assessed through photooxidation of NOx under both UV and visible light irradiance. Enhanced photoactivity was observed in the prepared samples irrespective of the light types. After 1 h of UV/visible light-based photooxidation, the best sample STC4 was found to remove 15.18% and 9.16% of atmospheric NO, respectively. In STC4, the mixing ratio of S-TiO2, to melamine was maintained as 1:3. Moreover, the optical bandgap of STC4 was found as 2.65 eV, where for S-TiO2, it was 2.83 eV. Hence, the restrained rate of photogenerated charge recombination and tailored energy bandgap of the as-prepared samples were the primary factors for enhancing photoactivity

    Visible light responsive titanium dioxide (TiO<inf>2</inf>)

    Full text link
    Titanium dioxide (TiO2) is one of the most researched semiconductor oxides that has revolutionised technologies in the field of environmental purification and energy generation. It has found extensive applications in heterogenous photocatalysis for removing organic pollutants from air and water and also in hydrogen production from photocatalytic water-splitting. Its use is popular because of its low cost, low toxicity, high chemical and thermal stability, But one of the critical limitations of TiO 2 as photocatalyst is its poor response to visible light. Several attempts have been made to modify the surface and electronic structures of TiO2 to enhance its activity in the visible light region such as noble metal deposition, metal ion loading, cationic and anionic doping and sensitisation, Most of the results improved photocatalytic performance under visible light irradiation. This paper attempts to review and update some of the information on the TiO2 photocatalytic technology and its accomplishment towards visible light region

    Performance of a novel baffled osmotic membrane bioreactor-microfiltration hybrid system under continuous operation for simultaneous nutrient removal and mitigation of brine discharge

    Full text link
    © 2017 Elsevier Ltd The present study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor system for wastewater treatment employing baffles in the reactor. Thus, this reactor design enables both aerobic and anoxic processes in an attempt to reduce the process footprint and energy costs associated with continuous aeration. The process performance was evaluated in terms of water flux, salinity build up in the bioreactor, organic and nutrient removal and microbial activity using synthetic reverse osmosis (RO) brine as draw solution (DS). The incorporation of MF membrane was effective in maintaining a reasonable salinity level (612–1434 mg/L) in the reactor which resulted in a much lower flux decline (i.e. 11.48–6.98 LMH) as compared to previous studies. The stable operation of the osmotic membrane bioreactor–forward osmosis (OMBR-FO) process resulted in an effective removal of both organic matter (97.84%) and nutrient (phosphate 87.36% and total nitrogen 94.28%), respectively
    • …
    corecore