1,967 research outputs found

    Investigation of pilot-scale 8040 FO membrane module under different operating conditions for brackish water desalination

    Full text link
    © 2014, © 2014 Balaban Desalination Publications. All rights reserved. Two spiral wound forward osmosis membrane modules with different spacer designs (corrugated spacer [CS] and medium spacer [MS]) were investigated for the fertilizer-drawn forward osmosis (FO) desalination of brackish groundwater (BGW) at a pilot-scale level. This study mainly focused on examining the influence of various operating conditions such as feed flow rate, total dissolved solids (TDS) concentration of the BGW feed, and draw solution (DS) concentrations using ammonium sulfate ((NH4)2SO4, SOA) on the performance of two membrane modules. The feed flow rate played a positive role in the average water flux of the pilot-scale FO membrane module due to enhanced mass transfer coefficient across the membrane surface. Feed TDS and DS concentrations also played a significant role in both FO membrane modules because they are directly related to the osmotic driving force and membrane fouling tendency. CS module performed slightly better than MS module during all experiments due to probably enhanced mass transfer and lower fouling propensity associated with the CS. Besides, CS spacer provides larger channel space that can accommodate larger volumes of DS, and hence, could maintain higher DS concentration. However, the extent of dilution for the CS module is slightly lower

    Ultraflitration of wastewater with pretreatment: evaluation of flux decline models

    Full text link
    Three different mathematical models relating the flux decline were investigated to quantify the effects of pretreatment in a membrane filtration system. The models used are empirical flux decline model, series resistance flux decline model and modified series resistance flux decline model. A cross flow ultrafiltration unit was used to study flux decline and organic removal from synthetic wastewater. Flocculation and adsorption pretreatments were carried out with ferric chloride (FeCl3) and activated carbon of different doses. The three models could predict flux decline after different pretreatments and could be used as a pretreatment index to ultrafiltration. © 2008

    Chemical-assisted physico-biological water mining system

    Full text link
    Water mining is the process of extracting valuable water from a sewerage network by treating raw sewage to high standards. A range of commercially viable water mining treatment technologies are now available to treat sewage to specified water quality targets. Most of these technologies have minimal plant footprint requirements, making them suitable for decentralised operations. This paper discusses a hybrid water mining system that includes chemically assisted fine solids separation followed by a biological treatment process. Results from the first proof testing of this water mining system in Sydney, Australia are presented. The results confirm the suitability of the hybrid system for producing high-quality water for non-potable reuse

    Draw solutes in forward osmosis processes

    Full text link
    © 2015 by the American Society of Civil Engineers. All Rights Reserved. This chapter provides insight into the selection of suitable draw solutions (DS) and reviews different DS characteristics affecting the performance of forward osmosis (FO) processes. Although some commercial applications of FO technology exist, the development of an effective large-scale process is currently limited due to the lack of both suitable DS and membrane. The success of most FO applications also relies on how the DS can be recovered from the produced water. Therefore, in commercial FO processes, such as FO followed by reverse osmosis seawater desalination, emergency drinks and osmotic dilution are used without a DS recovery system-a simple and energy-saving solution. Research is still needed to develop more suitable DS to achieve full-scale commercialization of the FO process

    Performance analysis of reverse osmosis, membrane distillation, and pressure-retarded osmosis hybrid processes

    Full text link
    © 2015 Elsevier B.V. A performance analysis of a tri-combined process that consists of reverse osmosis (RO), membrane distillation (MD), and pressure-retarded osmosis (PRO) was conducted by using numerical approaches in order to evaluate its feasibility. In the hybrid process, the RO brine is partially used as the MD feed solution, and the concentrated MD brine is then mixed with the rest of the RO brine to be considered as the PRO draw solution. Here, the brine division ratio, incoming flow rate of RO, dimensions of the MD and PRO processes, and the supply cost of the MD heat source were considered as influential parameters. Previously validated process models were employed and the specific energy consumption (SEC) was calculated to examine the performance of the RO-MD-PRO hybrid process. The simulation results confirmed that the RO-MD-PRO hybrid process could outperform stand-alone RO in terms of reducing the SEC and the environmental footprint by dilution of the RO brine in locations where free or low-cost thermal energy can be exploited. Despite the need for further investigations and pilot-tests to determine its commercial practicability, this study provides insights into future directions for water and energy nexus processes for energy efficient desalination

    Biofilter as pretreatment to membrane based desalination: Evaluation in terms of fouling index

    Full text link
    The removal of particulate matter and dissolved organic matter from seawater by the use of biofiltration was investigated. Granular activated carbon (GAC) and anthracite were used as biofilter media at two different filtration velocities. Filtrate quality was measured in terms of silt density index (SDI), modified fouling index (MFI) and turbidity removal. Reverse osmosis (RO) was used as a post-treatment. Both biofilters demonstrated similar fouling reduction behavior in terms of SDI and MFI. Fouling potential in terms of MFI values decreased to 10 s/L2 within the first 10-15 days of operation and kept constant up to the remaining experimental period of 55 days of operation for both GAC and anthracite biofilter. The filtrate turbidity was steady after 10 days and remained low at a value of 0.2-0.3 NTU and 0.28-0.31 NTU for anthracite and GAC biofilter, respectively. Furthermore, the headloss development was low and within 20 cm for biofilter operated at a low velocity of 5 m/h. A post-treatment of reverse osmosis after a pretreatment of GAC and anthracite biofilters showed a reduction in normalized flux decline (J/J0) from 0.22 to 0.12 and 0.35 to 0.21 during the first 20 h, respectively. The RO flux for seawater declined at a faster rate and continued even after 3 days when no pretreatment was provided. © 2009

    Arsenic removal by a membrane hybrid filtration system

    Full text link
    Arsenic is a toxic semi-metallic element that can be fatal to human health. Membrane filtration can remove a number of contaminants from water, including arsenic. Removal of arsenic by membrane filtration is highly dependent on the species of arsenic and the properties of the membrane. The performance of the nanofilter is better for removing As(V) than As(III). About 57% of As(III) and 81% of As(V) was removed from 500 mg/L arsenic solutions by nanofiltration (NTR729HF, Nitto Denko Corp., Japan) of 700 molecular weight (MW) cutoff. The removal efficiency of microfiltration (MF) was much lower than that of nanofiltration (NF) due to its larger pore size. By comparison only 37% of As(III) and 40% of As(V) were removed by microfiltration (PVA membrane, Pure-Envitech, Korea). However, the removal efficiency of microfiltration was increased dramatically when a small amount of nanoscale zero valent iron (nZVI) was added. The removal efficiency by MF increased up to 90% with As(V) and 84% with As(III) when an amount of 0.1 g/L of nZVI was added into the arsenic solution. © 2008 Elsevier B.V. All rights reserved

    Recent advances in osmotic energy generation via pressure-retarded osmosis (PRO): A review

    Full text link
    © 2015 by the authors. Global energy consumption has been highly dependent on fossil fuels which cause severe climate change and, therefore, the exploration of new technologies to produce effective renewable energy plays an important role in the world. Pressure-retarded osmosis (PRO) is one of the promising candidates to reduce the reliance on fossil fuels by harnessing energy from the salinity gradient between seawater and fresh water. In PRO, water is transported though a semi-permeable membrane from a low-concentrated feed solution to a high-concentrated draw solution. The increased volumetric water flow then runs a hydro-turbine to generate power. PRO technology has rapidly improved in recent years; however, the commercial-scale PRO plant is yet to be developed. In this context, recent developments on the PRO process are reviewed in terms of mathematical models, membrane modules, process designs, numerical works, and fouling and cleaning. In addition, the research requirements to accelerate PRO commercialization are discussed. It is expected that this article can help comprehensively understand the PRO process and thereby provide essential information to activate further research and development

    Enhancement of nanoscale zero-valent iron immobilization onto electrospun polymeric nanofiber mats for groundwater remediation

    Full text link
    © 2017 Institution of Chemical Engineers A new approach that combines nanoscale zero-valent iron (nZVI) with electrospinning technology has been put forward to avoid nZVI agglomeration and a secondary pollution. In this study, to enhance the immobilization of nZVI particles onto the polyacrylic acid (PAA)/polyvinyl alcohol (PVA) electrospun nanofiber mat, mats (M1, M2 and M3) with different PAA/PVA mass ratios (1:1, 2:1 and 3:1) were tested for the immobilization of nZVI particles and their performance of removing contaminants. The results indicate that M3 immobilized the most nZVI particles (48.4 wt% on the mat, ∼2.5 times the figure for previous study) and had the highest removals to methylene blue and Cu(II) ions at 94% and 83.6% respectively, resulting from more free carboxylic groups available on the cross-linked nanofibers as well as a higher porosity into the mat. Therefore, increasing the PAA/PVA ratio is effective to boost the performance of nZVI–PAA/PVA electrospun nanofiber mat, which has a great potential for the application of nZVI-targeted contaminants remediation

    Cannibalism and Gang Involvement in the Cinematic Lives of Asian Gangsters

    Get PDF
    Abstract: Previous works focusing on Asian organized crime groups have examined the history, structure, function, and the extent of their legal and illegal business enterprises. While credible, such a line of inquiry omits crucial information on the source and reasoning behind membership and affiliation for members in Asian organized crime groups, such as the "Jok-Pok", Triads, and Yakuza. Due to the secretive nature of those organized crime groups, such an omission leaves a major gap in the understanding as to why Asian youths join gangs. This paper examines the prevailing characteristics of membership and affiliation within Asian gangs by analyzing Asian gangsters in Asian (Chinese, Japanese, Korean) cinema. Results indicate that the lure of economic benefits, exposure to gang life from within one's family and lack of opportunities to achieve legitimate goals constitute the three most pervasive themes that define membership within Asian gangs as represented in popular cinema
    • …
    corecore