1,754 research outputs found

    Development of a new poly silicate ferric coagulant and its application to coagulation-membrane filtration hybrid system in wastewater treatment

    Full text link
    Coagulation is one of the effective pretreatment stages in membrane filtration of wastewaters to produce clean water. Using a suitable coagulant, one can mitigate membrane fouling. Membrane fouling is a process where particles deposit onto a membrane surface or into membrane pores in a way that degrades the membrane's performance. Research in this area is currently being focused on development of improved coagulation reagents such as poly silicate ferric (PSiFe), which has a high molecular weight and large number of positive surface charges with high efficiency at low doses. In this paper, PSiFe was prepared by following two approaches: (a) acidification of water glass solution using HCl followed by FeCl3 addition (old-PSiFe); (b) acidification of water glass solution by passing it through an acidic ion exchange resin followed by fresh FeCl3 addition under different Fe/Si molar ratios (new-PSiFe). These coagulants were characterised by X-ray diffraction and scanning electron microscopy. According to coagulation jar test results when Fe/Si = 1, the best performance was achieved in terms of turbidity, total organic carbon (TOC) and UV254 removals. Another aspect is the comparison of the old-PSiFe, FeCl3 and new-PSiFe which showed that in a membrane filtration system, using the new-PSiFe not only reduces the required transmembrane pressure (TMP) due to lower fouling, but also improves the TOC removal efficiency. © 2013 © 2013 Balaban Desalination Publications. All rights reserved

    Effect of Photocatalysis on the Membrane Hybrid System for wastewater treatment

    Full text link
    An integrated photocatalysismembrane hybrid system was investigated for wastewater treatment with the main focus on improving the cross flow microfiltration (MF) permeate flux. Photocatalysis with TiO2 (P25 Degussa) suspension as photocatalyst was applied both as pre-treatment and as inline treatment with MF. The TiO2 slurry was found to have significant effect in permeate flux for wastewater with lower dissolved organic carbon concentration. The MF flux decline due to TiO2 slurry cake on the membrane surface was minimized by allowing the TiO2 slurry to settle and by using only the supernatant for further treatment using the hybrid system. The investigation also included the study on the effect of photocatalytic reaction time and the slurry settling times on the MF permeate flux. The irradiation of ultraviolet on the MF surface in presence of TiO2 catalyst in suspension yielded in an increase in permeate flux

    Investigation of pilot-scale 8040 FO membrane module under different operating conditions for brackish water desalination

    Full text link
    © 2014, © 2014 Balaban Desalination Publications. All rights reserved. Two spiral wound forward osmosis membrane modules with different spacer designs (corrugated spacer [CS] and medium spacer [MS]) were investigated for the fertilizer-drawn forward osmosis (FO) desalination of brackish groundwater (BGW) at a pilot-scale level. This study mainly focused on examining the influence of various operating conditions such as feed flow rate, total dissolved solids (TDS) concentration of the BGW feed, and draw solution (DS) concentrations using ammonium sulfate ((NH4)2SO4, SOA) on the performance of two membrane modules. The feed flow rate played a positive role in the average water flux of the pilot-scale FO membrane module due to enhanced mass transfer coefficient across the membrane surface. Feed TDS and DS concentrations also played a significant role in both FO membrane modules because they are directly related to the osmotic driving force and membrane fouling tendency. CS module performed slightly better than MS module during all experiments due to probably enhanced mass transfer and lower fouling propensity associated with the CS. Besides, CS spacer provides larger channel space that can accommodate larger volumes of DS, and hence, could maintain higher DS concentration. However, the extent of dilution for the CS module is slightly lower

    Water Quality in Rainwater Tanks in Rural and Metropolitan Areas of New South Wales, Australia

    Full text link
    This paper compares the water quality of rainwater tanks throughout the Sydney metropolitan area to that in rural New South Wales, Australia. The water quality is compared against the Australian Guidelines for Water Recycling (AGWR) to determine if the untreated rainwater from both areas can be considered suitable for non-potable water supply without filtration. Additionally this paper reports on a set of experiments where rainwater collected from a typical domestic roof in Sydney, New South Wales, Australia was treated by a pre-treatment of granular activated carbon (GAC) adsorption filter followed by micro-filtration. The GAC column removed the pollutants through an adsorption mechanism. GAC is a macroporous solid with a very large surface area providing many sites for adsorption and it is this property that makes it an efficient adsorbent. The parameters analysed were ammonia, anions and cations, heavy metals, nitrate and nitrite, pH, total hardness, total organic carbon, total suspended solids and turbidity. The results indicate that before treatment, the rainwater already complied to many of the parameters specified in the AGWR, certain pollutants have the potential at times to exceed the AGWR. The water quality was within the AGWR limits after the treatment. The micro- filtration flux values demonstrate that rainwater was able to be filtered through the membranes under low gravitational heads that are typically available in a rainwater tank while still producing sufficient membrane flux and pollutant removal rates

    Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook

    Get PDF
    Recently, Forward Osmosis (FO) desalination process has been widely investigated as a potential technology that could minimize the drawbacks of traditional desalination processes. To review the past, current, and future research scope of the FO desalination process, a statistical analysis that gives insights on the FO topics of interest is needed to assist researchers in the development of the FO technology. The main objective of this work is to conduct a survey highlighting the general and specific research trends in FO technology topics. The level of research interest is quantified based on the number of publications in each area collected from Science Direct and Scopus databases from 1999 to 2020. This survey indicated an increasing number of publications on the FO processes and membranes technology. The topics of interest are fouling phenomenon, draw solutions, membrane fabrication and modification. Some potential research areas highlighted in this review to help researchers to further advance the FO technology. This review reveals that recycling the draw solution and energy consumption are the most important research areas that have shown growth in the number of publications over the last eight years. An increase of publications was also found in the treatment of the organic matter over the last decade. To further promote FO process in industry, developing FO membranes, optimizing the energy consumption, and establishing an effective recovery system are the most essential topics. Thus, the interest in this process is expected to be continued in the future

    Sulfur-containing air pollutants as draw solution for fertilizer drawn forward osmosis desalination process for irrigation use

    Full text link
    © 2017 Elsevier B.V. This study investigated suitability and performance of the sulfur-based seed solution (SBSS) as a draw solution (DS), a byproduct taken from the photoelectrochemical (PEC) process where the SBSS is used as an electrolyte for H2 production. This SBSS DS is composed of a mixture of ammonium sulfate ((NH4)2SO4) and ammonium sulfite ((NH4)2SO3), and it can be utilized as fertilizer for fertilizer drawn forward osmosis (FDFO) desalination of saline water. The FDFO process employed with thin-film composite (TFC) membrane and showed that the process performance (i.e. water flux and reverse salt flux) is better than that with cellulose triacetate (CTA) membrane. In addition, it produced high water flux of 19 LMH using SBSS as DS at equivalent concentration at 1 M and 5 g/L NaCl of feed solution (model saline water). Experimental results showed that the reverse salt flux of SBSS increased with the increase in pH of the DS and that lowering the concentration of ammonium sulfite in the SBSS led to the higher water flux of feed solution. The result also demonstrated that this SBSS is practically suitable for the FDFO process toward development of water-energy-food nexus technology using sulfur chemicals-containing air pollutant

    Multichannel Anomaly of the Resonance Pole Parameters Resolved

    Get PDF
    Inspired by anomalies which the standard scattering matrix pole-extraction procedures have produced in a mathematically well defined coupled-channel model, we have developed a new method based solely on the assumption of partial-wave analyticity. The new method is simple and applicable not only to theoretical predictions but to the empirical partial-wave data as well. Since the standard pole-extraction procedures turn out to be the lowest-order term of the proposed method the anomalies are understood and resolved.Comment: 5 page
    • …
    corecore