16 research outputs found

    Genetic variation of Metapenaeus affinis in Persian Gulf coastal waters using microsatellite markers

    Get PDF
    Genetic diversity of Metapenaeus affinis population from the northern coasts of the Persian Gulf (Bahrakan, Lifeh-Boosiaf) was studies using microsatellite markers. During September to October 2007, 60 samples of pleopods tissue of the shrimp were taken and genomic DNA was extracted by acetate method. PCR was performed on microsatellite primers. To measure fragment size, samples were run on an 8% polyacrylamid gel. For each microsatellite locus, using genetic software, Pop Gene and Gene Alex, allele frequency, real and expected heterozygosity, Fst and Rst and other relevant factors were measured. Of the obtained 5 paired microsatellite primers, all were polymorphic. The mean observed and effective alleles number was 7 and 3.67, respectively and also the mean observed and expected heterozygosis was 0.27 and 0.66, respectively. It was also seen that specimens from all regions were not in HardyWeinberg Equibrium in all of the loci. Based on the analysis of molecular variance (AMOVA) Fst, Rst and Nm were 0.107, 0.372 and 2.092, respectively. The highest genetic distance was 0.571 and the lowest was 0.561. The present study showed that two different populations of Metapenaeus affinis are living in the Bahrakan and Lifeh-Boosiaf region northwest coasts of the Persian Gulf

    Lycopene reduces ovarian tumor growth and intraperitoneal metastatic load

    Get PDF
    Mutagens like oxidants cause lesions in the DNA of ovarian and fallopian tube epithelial cells, resulting in neoplastic transformation. Reduced exposure of surface epithelia to oxidative stress may prevent the onset or reduce the growth of ovarian cancer. Lycopene is well-known for its excellent antioxidant properties. In this study, the potential of lycopene in the prevention and treatment of ovarian cancer was investigated using an intraperitoneal animal model. Lycopene prevention significantly reduced the metastatic load of ovarian cancer-bearing mice, whereas treatment of already established ovarian tumors with lycopene significantly diminished the tumor burden. Lycopene treatment synergistically enhanced anti-tumorigenic effects of paclitaxel and carboplatin. Immunostaining of tumor and metastatic tissues for Ki67 revealed that lycopene reduced the number of proliferating cancer cells. Lycopene decreased the expression of the ovarian cancer biomarker, CA125. The anti-metastatic and anti-proliferative effects were accompanied by down-regulated expression of ITGA5, ITGB1, MMP9, FAK, ILK and EMT markers, decreased protein expression of integrin α5 and reduced activation of MAPK. These findings indicate that lycopene interferes with mechanisms involved in the development and progression of ovarian cancer and that its preventive and therapeutic use, combined with chemotherapeutics, reduces the tumor and metastatic burden of ovarian cancer in vivo

    Endosteal-like extracellular matrix expression on melt electrospun written scaffolds

    Get PDF
    Commonwealth Scientific and Industrial Research Organisation, the Australian Research Council, National Health and Medical Research Council, Movember Foundation and the Prostate Cancer Foundation of Australia through a Movember Revolutionary Team Award

    A 3D tumor microenvironment regulates cell proliferation, peritoneal growth and expression patterns.

    No full text
    Peritoneal invasion through the mesothelial cell layer is a hallmark of ovarian cancer metastasis. Using tissue engineering technologies, we recreated an ovarian tumor microenvironment replicating this aspect of disease progression. Ovarian cancer cell-laden hydrogels were combined with mesothelial cell-layered melt electrospun written scaffolds and characterized with proliferation and transcriptomic analyses and used as intraperitoneal xenografts. Here we show increased cancer cell proliferation in these 3D co-cultures, which we validated using patient-derived cells and linked to peritoneal tumor growth in vivo. Transcriptome-wide expression analysis identified IGFBP7, PTGS2, VEGFC and FGF2 as bidirectional factors deregulated in 3D co-cultures compared to 3D mono-cultures, which we confirmed by immunohistochemistry of xenograft and patient-derived tumor tissues and correlated with overall and progression-free survival. These factors were further increased upon expression of kallikrein-related proteases. This clinically predictive model allows us to mimic the complexity and processes of the metastatic disease that may lead to therapies that protect from peritoneal invasion or delay the development of metastasis.Australian Research Council (D.W.H., J.A.C., D.L.), National Health and Medical Research Council of Australia (D.W.H., J.A.C.), Cancer Council Queensland (J.A.C., D.L.), Movember Foundation and the Prostate Cancer Foundation of Australia through a Movember Revolutionary Team Award (J.A.C, D.W.H.), German Research Association (B.M.H., F.W.), Queensland University of Technology Mid-Career Researcher Award (D.L.) and a mobility grant (Personalized Medicine) from the German Academic Exchange Service (D.W.H., J.A.C., D.L.

    Engineering osteoblastic metastases to delineate the adaptive response of androgen-deprived prostate cancer in the bone metastatic microenvironment

    No full text
    While stromal interactions are essential in cancer adaptation to hormonal therapies, the effects of bone stroma and androgen deprivation on cancer progression in bone are poorly understood. Here, we tissue-engineered and validated an in vitro microtissue model of osteoblastic bone metastases, and used it to study the effects of androgen deprivation in this microenvironment. The model was established by culturing primary human osteoprogenitor cells on melt electrowritten polymer scaffolds, leading to a mineralized osteoblast-derived microtissue containing, in a 3D setting, viable osteoblastic cells, osteocytic cells, and appropriate expression of osteoblast/osteocyte-derived mRNA and proteins, and mineral content. Direct co-culture of androgen receptordependent/independent cell lines (LNCaP, C4-2B, and PC3) led cancer cells to display functional and molecular features as observed in vivo. Co-cultured cancer cells showed increased affinity to the microtissues, as a function of their bone metastatic potential. Co-cultures led to alkaline phosphatase and collagen-I upregulation and sclerostin downregulation, consistent with the clinical marker profile of osteoblastic bone metastases. LNCaP showed a significant adaptive response under androgen deprivation in the microtissues, with the notable appearance of neuroendocrine transdifferentiation features and increased expression of related markers (dopa decarboxylase, enolase 2). Androgen deprivation affected the biology of the metastatic microenvironment with stronger upregulation of androgen receptor, alkaline phosphatase, and dopa decarboxylase, as seen in the transition towards resistance. The unique microtissues engineered here represent a substantial asset to determine the involvement of the human bone microenvironment in prostate cancer progression and response to a therapeutic context in this microenvironment

    In vitro engineering of a bone metastases model allows for study of the effects of antiandrogen therapies in advanced prostate cancer

    No full text
    While androgen-targeted therapies are routinely used in advanced prostate cancer (PCa), their effect is poorly understood in treating bone metastatic lesions and ultimately results in the development of metastatic castrate resistant prostate cancer (mCRPC). Here, we used an all-human microtissue-engineered model of mineralized metastatic tissue combining human osteoprogenitor cells, 3D printing and prostate cancer cells, to assess the effects of the antiandrogens, bicalutamide, and enzalutamide in this microenvironment. We demonstrate that cancer/ bone stroma interactions and antiandrogens drive cancer progression in a mineralized microenvironment. Probing the bone microenvironment with enzalutamide led to stronger cancer cell adaptive responses and osteomimicry than bicalutamide. Enzalutamide presented with better treatment response, in line with enzalutamide delaying time to bone-related events and enzalutamide extending survival in mCRPC. The all-human microtissue-engineered model of mineralized metastatic tissue presented here represents a substantial advance to dissect the role of the bone tumor microenvironment and responses to therapies for mCPRC.</p

    Humanized bone facilitates prostate cancer metastasis and recapitulates therapeutic effects of zoledronic acid in vivo

    No full text
    Advanced prostate cancer (PCa) is known for its high prevalence to metastasize to bone, at which point it is considered incurable. Despite significant effort, there is no animal model capable of recapitulating the complexity of PCa bone metastasis. The humanized mouse model for PCa bone metastasis used in this study aims to provide a platform for the assessment of new drugs by recapitulating the human-human cell interactions relevant for disease development and progression. The humanized tissue-engineered bone construct (hTEBC) was created within NOD-scid IL2rg(null) (NSG) mice and was used for the study of experimental PC3-Luc bone metastases. It was confirmed that PC3-Luc cells preferentially grew in the hTEBC compared with murine bone. The translational potential of the humanized mouse model for PCa bone metastasis was evaluated with two clinically approved osteoprotective therapies, the non-species-specific bisphosphonate zoledronic acid (ZA) or the human-specific antibody Denosumab, both targeting Receptor Activator of Nuclear Factor Kappa-B Ligand. ZA, but not Denosumab, significantly decreased metastases in hTEBCs, but not murine femora. These results highlight the importance of humanized models for the preclinical research on PCa bone metastasis and indicate the potential of the bioengineered mouse model to closely mimic the metastatic cascade of PCa cells to human bone. Eventually, it will enable the development of new effective antimetastatic treatments

    Insulin enhances migration and invasion in prostate cancer cells by up-regulation of FOXC2

    No full text
    Androgen deprivation therapy (ADT) is the standard treatment for advanced prostate cancer (PCa), yet many patients relapse with lethal metastatic disease. With this loss of androgens, increased cell plasticity has been observed as an adaptive response to ADT. This includes gain of invasive and migratory capabilities, which may contribute to PCa metastasis. Hyperinsulinemia, which develops as a side-effect of ADT, has been associated with increased tumor aggressiveness and faster treatment failure. We investigated the direct effects of insulin in PCa cells that may contribute to this progression. We measured cell migration and invasion induced by insulin using wound healing and transwell assays in a range of PCa cell lines of variable androgen dependency (LNCaP, 22RV1, DuCaP, and DU145 cell lines). To determine the molecular events driving insulin-induced invasion we used transcriptomics, quantitative real time-PCR, and immunoblotting in three PCa cell lines. Insulin increased invasiveness of PCa cells, upregulating Forkhead Box Protein C2 (FOXC2), and activating key PCa cell plasticity mechanisms including gene changes consistent with epithelial-to-mesenchymal transition (EMT) and a neuroendocrine phenotype. Additionally, analysis of publicly available clinical PCa tumor data showed metastatic prostate tumors demonstrate a positive correlation between insulin receptor expression and the EMT transcription factor FOXC2. The insulin receptor is not suitable to target clinically however, our data shows that actions of insulin in PCa cells may be suppressed by inhibiting downstream signaling molecules, PI3K and ERK1/2. This study identifies for the first time, a mechanism for insulin-driven cancer cell motility and supports the concept that targeting insulin signaling at the level of the PCa tumor may extend the therapeutic efficacy of ADT

    Antagonists of IGF:Vitronectin Interactions Inhibit IGF-I-Induced Breast Cancer Cell Functions

    No full text
    Free to read\ud \ud We provide proof-of-concept evidence for a new class of therapeutics that target growth factor:extracellular matrix (GF:ECM) interactions for the management of breast cancer. Insulin-like growth factor-I (IGF-I) forms multiprotein complexes with IGF-binding proteins (IGFBP) and the ECM protein vitronectin (VN), and stimulates the survival, migration and invasion of breast cancer cells. For the first time we provide physical evidence for IGFBP-3:VN interactions in breast cancer patient tissues; these interactions were predominantly localized to tumor cell clusters and in stroma surrounding tumor cells. We show that disruption of IGF-I:IGFBP:VN complexes with L27-IGF-II inhibits IGF-I:IGFBP:VN-stimulated breast cancer cell migration and proliferation in two- and three-dimensional assay systems. Peptide arrays screened to identify regions critical for the IGFBP-3/-5:VN and IGF-II:VN interactions demonstrated IGFBP-3/-5 and IGF-II binds VN through the hemopexin-2 domain, and VN binds IGFBP-3 at residues not involved in the binding of IGF-I to IGFBP-3. IGFBP-interacting VN peptides identified from these peptide arrays disrupted the IGF-I:IGFBP:VN complex, impeded the growth of primary tumor-like spheroids and, more importantly, inhibited the invasion of metastatic breast cancer cells in 3D assay systems. These studies provide first-in-field evidence for the utility of small peptides in antagonizing GF:ECM-mediated biologic functions and present data demonstrating the potential of these peptide antagonists as novel therapeutics
    corecore