68 research outputs found

    Lipopolysaccharide Interaction with Cell Surface Toll-like Receptor 4-MD-2: Higher Affinity than That with MD-2 or CD14

    Get PDF
    Toll-like receptors (TLRs) are innate recognition molecules for microbial products, but their direct interactions with corresponding ligands remain unclarified. LPS, a membrane constituent of gram-negative bacteria, is the best-studied TLR ligand and is recognized by TLR4 and MD-2, a molecule associated with the extracellular domain of TLR4. Although TLR4-MD-2 recognizes LPS, little is known about the physical interaction between LPS and TLR4-MD-2. Here, we demonstrate cell surface LPS–TLR4-MD-2 complexes. CD14 greatly enhances the formation of LPS–TLR4-MD-2 complexes, but is not coprecipitated with LPS–TLR4-MD-2 complexes, suggesting a role for CD14 in LPS loading onto TLR4-MD-2 but not in the interaction itself between LPS and TLR4-MD-2. A tentative dissociation constant (Kd) for LPS–TLR4-MD-2 complexes was ∼3 nM, which is ∼10–20 times lower than the reported Kd for LPS–MD-2 or LPS–CD14. The presence of detergent disrupts LPS interaction with CD14 but not with TLR4-MD-2. E5531, a lipid A antagonist developed for therapeutic intervention of endotoxin shock, blocks LPS interaction with TLR4-MD-2 at a concentration 100 times lower than that required for blocking LPS interaction with CD14. These results reveal direct LPS interaction with cell surface TLR4-MD-2 that is distinct from that with MD-2 or CD14

    Acidic, Selective Monoacylation of vic

    No full text

    Mitogenic Effects of Bacterial Cell Walls and Their Components on Murine Splenocytes

    Full text link

    Correlation between the Immunoadjuvant Activities and Pyrogenicities of Synthetic N-Acetylmuramyl-Peptides or -Amino Acids

    Full text link
    • …
    corecore