24 research outputs found
Improvement of the prediction accuracy of NO emissions in counter-flow diffusion flames on using NO mass fraction as a progress variable
Computational fluid dynamics has been widely used to predict the production of nitrogen oxide (NO). Flamelet approach is commonly used as a modelling technique to perform turbulent combustion simulations. As the prediction of NO emissions with the flamelet approach is not reliable, when predicting the NO emission, the NO emissions are calculated with the conservation equation of NO mass fraction, and the NO production rate is predicted with the flamelet approach. In this study, we used the mixture fraction and NO mass fraction to predict the NO production rate in the conservation equation of the NO mass fraction, comparing the numerical results calculated with proposed method with those with the conventional methods and detailed chemistry model. Numerical simulations of counter-flow diffusion flames where NO was not supplied, that was supplied with fuel, and that was supplied with oxidizer indicated that the distribution of NO mole fraction calculated with the proposed method was in better agreement with that of the detailed chemistry model than that of the conventional methods
Detection of the thermal component in GRB 160107A
We present the detection of a blackbody component in gamma-ray burst GRB 160107A emission by using the combined spectral data of the CALET Gamma-ray Burst Monitor (CGBM) and the MAXI Gas Slit Camera (GSC). MAXI/GSC detected the emission ∼45 s prior to the main burst episode observed by the CGBM. The MAXI/GSC and the CGBM spectrum of this prior emission period is fitted well by a blackbody with temperature 1.0 +0.3-0.2 keV plus a power law with a photon index of -1.6 ± 0.3. We discuss the radius of the photospheric emission and the main burst emission based on the observational properties. We stress the importance of coordinated observations via various instruments collecting high-quality data over a broad energy coverage in order to understand the GRB prompt emission mechanism
Developing a GIS Using a Mobile Phone equipped with a Camera and a GPS,
In this paper, we introduce our geographic information system using a mobile phone that is equipped with a camera and a GPS and its exhibitions