23 research outputs found

    Massive hematomyelia following intramedullary spinal cord tumor surgery

    Full text link
    SCOPUS: le.jinfo:eu-repo/semantics/publishe

    Brain-wide structural and functional disruption in mice with oligodendrocyte-specific Nf1 deletion is rescued by inhibition of nitric oxide synthase

    Full text link
    Neurofibromin gene (NF1) mutation causes neurofibromatosis type 1 (NF1), a disorder in which brain white matter deficits identified by neuroimaging are common, yet of unknown cellular etiology. In mice, Nf1 loss in adult oligodendrocytes causes myelin decompaction and increases oligodendrocyte nitric oxide (NO) levels. Nitric oxide synthase (NOS) inhibitors rescue this pathology. Whether oligodendrocyte pathology is sufficient to affect brain-wide structure and account for NF1 imaging findings is unknown. Here we show that Nf1 gene inactivation in adult oligodendrocytes (Plp-Nf1fl/+ mice) results in a motor coordination deficit. Magnetic resonance imaging in awake mice showed that fractional anisotropy is reduced in Plp-Nf1fl/+ corpus callosum and that interhemispheric functional connectivity in the motor cortex is also reduced, consistent with disrupted myelin integrity. Furthermore, NOS-specific inhibition rescued both measures. These results suggest that oligodendrocyte defects account for aspects of brain dysfunction in NF1 that can be identified by neuroimaging and ameliorated by NOS inhibition

    Demographics of focused ultrasound thalamotomy for essential tremor and trends in deep brain stimulation surgery after its introduction in the USA

    Full text link
    Background Essential tremor (ET) is a movement disorder that affects 4%–5% of adults >65 years. For patients with medically refractory ET, neurosurgical interventions such as deep brain stimulation (DBS) and unilateral MR-guided focused ultrasound thalamotomy (MRgFUS) are available. In this retrospective cohort study, we examined the demographics of patients with ET who have received MRgFUS and evaluated trends in DBS usage in the USA after the introduction of MRgFUS in 2016.Methods We used multiple databases to examine the demographics of patients who received DBS and MRgFUS, and trends in DBS. To assess the demographics, we queried the TriNetX database from 2003 to 2022 to identify patients diagnosed with ET and stratify them by DBS or MRgFUS treatment by using Current Procedural Terminology codes. Patient demographics were reported as frequencies and percentages. To examine the trends in DBS for ET, the yearly frequency of DBS procedures done for ET between 2012 and 2019 was extracted from the National Inpatient Sample (NIS) database, and breakpoint analysis was performed. Additionally, the yearly frequency of MRgFUS procedures for ET was obtained from Insightec Exlabate.Results Most of the patients (88.69%) in the cohort extracted from TriNetX database self-identified as white, followed by black or African American (2.40%) and Asian (0.52%). A higher percentage of black patients received MRgFUS treatment than DBS (4.10% vs 1.88%). According to the NIS database, from 2012 to 2020, 13 525 patients received DBS for ET.Conclusion This study provides an overview of the characteristics of patients who undergo DBS or MRgFUS. We found notable differences in sex and race among patients who underwent each treatment type. Additionally, until at least the beginning of 2020, the number of DBS procedures for ET was not negatively affected after the introduction of MRgFUS

    Brain-wide structural and functional disruption in mice with oligodendrocyte-specific Nf1

    Get PDF
    Neurofibromin gene (NF1) mutation causes neurofibromatosis type 1 (NF1), a disorder in which brain white matter deficits identified by neuroimaging are common, yet of unknown cellular etiology. In mice, Nf1 loss in adult oligodendrocytes causes myelin decompaction and increases oligodendrocyte nitric oxide (NO) levels. Nitric oxide synthase (NOS) inhibitors rescue this pathology. Whether oligodendrocyte pathology is sufficient to affect brain-wide structure and account for NF1 imaging findings is unknown. Here we show that Nf1 gene inactivation in adult oligodendrocytes (Plp-Nf1fl/+ mice) results in a motor coordination deficit. Magnetic resonance imaging in awake mice showed that fractional anisotropy is reduced in Plp-Nf1fl/+ corpus callosum and that interhemispheric functional connectivity in the motor cortex is also reduced, consistent with disrupted myelin integrity. Furthermore, NOS-specific inhibition rescued both measures. These results suggest that oligodendrocyte defects account for aspects of brain dysfunction in NF1 that can be identified by neuroimaging and ameliorated by NOS inhibition
    corecore