152 research outputs found

    Gene Mapping by Chromosome Microdissection and Microisolation in the Chicken

    Get PDF
    A chromosome microdissection and microisolation technique in combination with filter hybridization was developed for chromosomal localization of cloned chicken genes. The DNA was obtained from microdissected chromosome regions of metaphase spreads. Dissected DNA was amplified by polymerase chain reaction (PCR). The chicken MHC gene located on the nucleolar chromosome and β-actin gene located on chromosome 2q were chosen as tests for the procedure and then detected by dot blot analysis using amplified chromosomal DNA probed with biotinylated DNA. The study establishes the technique of using chromosome microdissection and microisolation for localization of cloned genes as a complementary or alternative approach to both in situ DNA/chromosome hybridization and fluorescent in situ hybridization

    Enhanced annealing of mismatched oligonucleotides using a novel melting curve assay allows efficient in vitro discrimination and restriction of a single nucleotide polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many SNP discrimination strategies employ natural restriction endonucleases to discriminate between allelic states. However, SNPs are often not associated with a restriction site and therefore, a number of attempts have been made to generate sequence-adaptable restriction endonucleases. In this study, a simple, sequence-adaptable SNP discrimination mechanism between a 'wild-type' and 'mutant' template is demonstrated. This model differs from other artificial restriction endonuclease models as <it>cis- </it>rather than <it>trans-</it>orientated regions of single stranded DNA were generated and cleaved, and therefore, overcomes potential issues of either inefficient or non-specific binding when only a single variant is targeted.</p> <p>Results</p> <p>A series of mismatch 'bubbles' that spanned 0-5-bp surrounding a point mutation was generated and analysed for sensitivity to S1 nuclease. In this model, generation of oligonucleotide-mediated ssDNA mismatch 'bubbles' in the presence of S1 nuclease resulted in the selective degradation of the mutant template while maintaining wild-type template integrity. Increasing the size of the mismatch increased the rate of mutant sequence degradation, until a threshold above which discrimination was lost and the wild-type sequence was degraded. This level of fine discrimination was possible due to the development of a novel high-resolution melting curve assay to empirically determine changes in Tm (~5.0°C per base-pair mismatch) and to optimise annealing conditions (~18.38°C below Tm) of the mismatched oligonucleotide sets.</p> <p>Conclusions</p> <p>The <it>in vitro </it>'cleavage bubble' model presented is sequence-adaptable as determined by the binding oligonucleotide, and hence, has the potential to be tailored to discriminate between any two or more SNPs. Furthermore, the demonstrated fluorometric assay has broad application potential, offering a rapid, sensitive and high-throughput means to determine Tm and annealing rates as an alternative to conventional hybridisation detection strategies.</p

    Using social cognitive career theory to understand why students choose to study computer science

    Get PDF
    The aim of this research is to use Social Cognitive Career Theory (SCCT) to identify and understand reasons why students choose to study Computer Science (CS) at university. SCCT focuses on students’ prior experience, social support, self-efficacy and outcome expectation. The research is part motivated by the desire to increase female participation rates in CS, particularly in the UK. Policymakers can use the factors that both females and males identify as influencing their choice of studying CS to enhance the experiences of all students prior to coming to university, but female students in particular. The study uses a semi-structured interview with 17 mixed gender subjects currently studying CS at three Scottish universities. The findings are that social support from family, teachers, friends and mentors is a particularly important factor in choosing to study CS, especially for female subjects. The career paths offered by a CS degree is another major factor, not just the potential jobs, but also the general value of a CS education and the potential to make useful contributions to society. School education appeared to have limited influence, though exposure to problem solving, programming, online self-learning and internships are positive influences. The stereotypical view of CS students as ‘geeks’ is outdated and unhelpful – it is more appropriate to see them as ‘analytical’ or ‘over-achievers’. Subjects make many suggestions for improving the CS education provided at school, especially to make it more attractive to females, including: make it compulsory, teach it earlier, include more programming and problem solving, and increase the visibility of female exemplars and role models

    Regionalized Pathology Correlates with Augmentation of mtDNA Copy Numbers in a Patient with Myoclonic Epilepsy with Ragged-Red Fibers (MERRF-Syndrome)

    Get PDF
    Human patients with myoclonic epilepsy with ragged-red fibers (MERRF) suffer from regionalized pathology caused by a mutation in the mitochondrial DNA (m.8344A→G). In MERRF-syndrome brain and skeletal muscles are predominantly affected, despite mtDNA being present in any tissue. In the past such tissue-specificity could not be explained by varying mtDNA mutation loads. In search for a region-specific pathology in human individuals we determined the mtDNA/nDNA ratios along with the mutation loads in 43 different post mortem tissue samples of a 16-year-old female MERRF patient and in four previously healthy victims of motor vehicle accidents. In brain and muscle we further determined the quantity of mitochondrial proteins (COX subunits II and IV), transcription factors (NRF1 and TFAM), and VDAC1 (Porin) as a marker for the mitochondrial mass. In the patient the mutation loads varied merely between 89–100%. However, mtDNA copy numbers were increased 3–7 fold in predominantly affected brain areas (e.g. hippocampus, cortex and putamen) and in skeletal muscle. Similar increases were absent in unaffected tissues (e.g. heart, lung, kidney, liver, and gastrointestinal organs). Such mtDNA copy number increase was not paralleled by an augmentation of mitochondrial mass in some investigated tissues, predominantly in the most affected tissue regions of the brain. We thus conclude that “futile” stimulation of mtDNA replication per se or a secondary failure to increase the mitochondrial mass may contribute to the regionalized pathology seen in MERRF-syndrome

    MHC-IIB Filament Assembly and Cellular Localization Are Governed by the Rod Net Charge

    Get PDF
    Actin-dependent myosin II molecular motors form an integral part of the cell cytoskeleton. Myosin II molecules contain a long coiled-coil rod that mediates filament assembly required for myosin II to exert its full activity. The exact mechanisms orchestrating filament assembly are not fully understood., negatively-charged regions of the coiled-coil were found to play an important role by controlling the intracellular localization of native MHC-IIB. The entire positively-charged region is also important for intracellular localization of native MHC-IIB.A correct distribution of positive and negative charges along myosin II rod is a necessary component in proper filament assembly and intracellular localization of MHC-IIB

    Analysis of Mitochondrial DNA Sequences in Childhood Encephalomyopathies Reveals New Disease-Associated Variants

    Get PDF
    BACKGROUND: Mitochondrial encephalomyopathies are a heterogeneous group of clinical disorders generally caused due to mutations in either mitochondrial DNA (mtDNA) or nuclear genes encoding oxidative phosphorylation (OXPHOS). We analyzed the mtDNA sequences from a group of 23 pediatric patients with clinical and morphological features of mitochondrial encephalopathies and tried to establish a relationship of identified variants with the disease. METHODOLOGY/PRINCIPLE FINDINGS: Complete mitochondrial genomes were amplified by PCR and sequenced by automated DNA sequencing. Sequencing data was analyzed by SeqScape software and also confirmed by BLASTn program. Nucleotide sequences were compared with the revised Cambridge reference sequence (CRS) and sequences present in mitochondrial databases. The data obtained shows that a number of known and novel mtDNA variants were associated with the disease. Most of the non-synonymous variants were heteroplasmic (A4136G, A9194G and T11916A) suggesting their possibility of being pathogenic in nature. Some of the missense variants although homoplasmic were showing changes in highly conserved amino acids (T3394C, T3866C, and G9804A) and were previously identified with diseased conditions. Similarly, two other variants found in tRNA genes (G5783A and C8309T) could alter the secondary structure of Cys-tRNA and Lys-tRNA. Most of the variants occurred in single cases; however, a few occurred in more than one case (e.g. G5783A and A10149T). CONCLUSIONS AND SIGNIFICANCE: The mtDNA variants identified in this study could be the possible cause of mitochondrial encephalomyopathies with childhood onset in the patient group. Our study further strengthens the pathogenic score of known variants previously reported as provisionally pathogenic in mitochondrial diseases. The novel variants found in the present study can be potential candidates for further investigations to establish the relationship between their incidence and role in expressing the disease phenotype. This study will be useful in genetic diagnosis and counseling of mitochondrial diseases in India as well as worldwide

    Mitochondrial Disease in Autism Spectrum Disorder Patients: A Cohort Analysis

    Get PDF
    Previous reports indicate an association between autism spectrum disorders (ASD) and disorders of mitochondrial oxidative phosphorylation. One study suggested that children with both diagnoses are clinically indistinguishable from children with idiopathic autism. There are, however, no detailed analyses of the clinical and laboratory findings in a large cohort of these children. Therefore, we undertook a comprehensive review of patients with ASD and a mitochondrial disorder.We reviewed medical records of 25 patients with a primary diagnosis of ASD by DSM-IV-TR criteria, later determined to have enzyme- or mutation-defined mitochondrial electron transport chain (ETC) dysfunction. Twenty-four of 25 patients had one or more major clinical abnormalities uncommon in idiopathic autism. Twenty-one patients had histories of significant non-neurological medical problems. Nineteen patients exhibited constitutional symptoms, especially excessive fatigability. Fifteen patients had abnormal neurological findings. Unusual developmental phenotypes included marked delay in early gross motor milestones (32%) and unusual patterns of regression (40%). Levels of blood lactate, plasma alanine, and serum ALT and/or AST were increased at least once in 76%, 36%, and 52% of patients, respectively. The most common ETC disorders were deficiencies of complex I (64%) and complex III (20%). Two patients had rare mtDNA mutations of likely pathogenicity.Although all patients' initial diagnosis was idiopathic autism, careful clinical and biochemical assessment identified clinical findings that differentiated them from children with idiopathic autism. These and prior data suggest a disturbance of mitochondrial energy production as an underlying pathophysiological mechanism in a subset of individuals with autism

    PINK1 Defect Causes Mitochondrial Dysfunction, Proteasomal Deficit and α-Synuclein Aggregation in Cell Culture Models of Parkinson's Disease

    Get PDF
    Mutations in PTEN induced kinase 1 (PINK1), a mitochondrial Ser/Thr kinase, cause an autosomal recessive form of Parkinson's disease (PD), PARK6. Here, we report that PINK1 exists as a dimer in mitochondrial protein complexes that co-migrate with respiratory chain complexes in sucrose gradients. PARK6 related mutations do not affect this dimerization and its associated complexes. Using in vitro cell culture systems, we found that mutant PINK1 or PINK1 knock-down caused deficits in mitochondrial respiration and ATP synthesis. Furthermore, proteasome function is impaired with a loss of PINK1. Importantly, these deficits are accompanied by increased α-synclein aggregation. Our results indicate that it will be important to delineate the relationship between mitochondrial functional deficits, proteasome dysfunction and α-synclein aggregation

    Evidence for Sub-Haplogroup H5 of Mitochondrial DNA as a Risk Factor for Late Onset Alzheimer's Disease

    Get PDF
    BACKGROUND: Alzheimer's Disease (AD) is the most common neurodegenerative disease and the leading cause of dementia among senile subjects. It has been proposed that AD can be caused by defects in mitochondrial oxidative phosphorylation. Given the fundamental contribution of the mitochondrial genome (mtDNA) for the respiratory chain, there have been a number of studies investigating the association between mtDNA inherited variants and multifactorial diseases, however no general consensus has been reached yet on the correlation between mtDNA haplogroups and AD. METHODOLOGY/PRINCIPAL FINDINGS: We applied for the first time a high resolution analysis (sequencing of displacement loop and restriction analysis of specific markers in the coding region of mtDNA) to investigate the possible association between mtDNA-inherited sequence variation and AD in 936 AD patients and 776 cognitively assessed normal controls from central and northern Italy. Among over 40 mtDNA sub-haplogroups analysed, we found that sub-haplogroup H5 is a risk factor for AD (OR=1.85, 95% CI:1.04-3.23) in particular for females (OR=2.19, 95% CI:1.06-4.51) and independently from the APOE genotype. Multivariate logistic regression revealed an interaction between H5 and age. When the whole sample is considered, the H5a subgroup of molecules, harboring the 4336 transition in the tRNAGln gene, already associated to AD in early studies, was about threefold more represented in AD patients than in controls (2.0% vs 0.8%; p=0.031), and it might account for the increased frequency of H5 in AD patients (4.2% vs 2.3%). The complete re-sequencing of the 56 mtDNAs belonging to H5 revealed that AD patients showed a trend towards a higher number (p=0.052) of sporadic mutations in tRNA and rRNA genes when compared with controls. CONCLUSIONS: Our results indicate that high resolution analysis of inherited mtDNA sequence variation can help in identifying both ancient polymorphisms defining sub-haplogroups and the accumulation of sporadic mutations associated with complex traits such as AD

    Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis

    Get PDF
    A comprehensive literature search was performed to collate evidence of mitochondrial dysfunction in autism spectrum disorders (ASDs) with two primary objectives. First, features of mitochondrial dysfunction in the general population of children with ASD were identified. Second, characteristics of mitochondrial dysfunction in children with ASD and concomitant mitochondrial disease (MD) were compared with published literature of two general populations: ASD children without MD, and non-ASD children with MD. The prevalence of MD in the general population of ASD was 5.0% (95% confidence interval 3.2, 6.9%), much higher than found in the general population (∼0.01%). The prevalence of abnormal biomarker values of mitochondrial dysfunction was high in ASD, much higher than the prevalence of MD. Variances and mean values of many mitochondrial biomarkers (lactate, pyruvate, carnitine and ubiquinone) were significantly different between ASD and controls. Some markers correlated with ASD severity. Neuroimaging, in vitro and post-mortem brain studies were consistent with an elevated prevalence of mitochondrial dysfunction in ASD. Taken together, these findings suggest children with ASD have a spectrum of mitochondrial dysfunction of differing severity. Eighteen publications representing a total of 112 children with ASD and MD (ASD/MD) were identified. The prevalence of developmental regression (52%), seizures (41%), motor delay (51%), gastrointestinal abnormalities (74%), female gender (39%), and elevated lactate (78%) and pyruvate (45%) was significantly higher in ASD/MD compared with the general ASD population. The prevalence of many of these abnormalities was similar to the general population of children with MD, suggesting that ASD/MD represents a distinct subgroup of children with MD. Most ASD/MD cases (79%) were not associated with genetic abnormalities, raising the possibility of secondary mitochondrial dysfunction. Treatment studies for ASD/MD were limited, although improvements were noted in some studies with carnitine, co-enzyme Q10 and B-vitamins. Many studies suffered from limitations, including small sample sizes, referral or publication biases, and variability in protocols for selecting children for MD workup, collecting mitochondrial biomarkers and defining MD. Overall, this evidence supports the notion that mitochondrial dysfunction is associated with ASD. Additional studies are needed to further define the role of mitochondrial dysfunction in ASD
    corecore