967 research outputs found

    PPARÎł2 Regulates a Molecular Signature of Marrow Mesenchymal Stem Cells

    Get PDF
    Bone formation and hematopoiesis are anatomically juxtaposed and share common regulatory mechanisms. Bone marrow mesenchymal stromal/stem cells (MSC) contain a compartment that provides progeny with bone forming osteoblasts and fat laden adipocytes as well as fibroblasts, chondrocytes, and muscle cells. In addition, marrow MSC provide an environment for support of hematopoiesis, including the development of bone resorbing osteoclasts. The PPARγ2 nuclear receptor is an adipocyte-specific transcription factor that controls marrow MSC lineage allocation toward adipocytes and osteoblasts. Increased expression of PPARγ2 with aging correlates with changes in the MSC status in respect to both their intrinsic differentiation potential and production of signaling molecules that contribute to the formation of a specific marrow micro-environment. Here, we investigated the effect of PPARγ2 on MSC molecular signature in respect to the expression of gene markers associated exclusively with stem cell phenotype, as well as genes involved in the formation of a stem cell supporting marrow environment. We found that PPARγ2 is a powerful modulator of stem cell-related gene expression. In general, PPARγ2 affects the expression of genes specific for the maintenance of stem cell phenotype, including LIF, LIF receptor, Kit ligand, SDF-1, Rex-1/Zfp42, and Oct-4. Moreover, the antidiabetic PPARγ agonist TZD rosiglitazone specifically affects the expression of “stemness” genes, including ABCG2, Egfr, and CD44. Our data indicate that aging and anti-diabetic TZD therapy may affect mesenchymal stem cell phenotype through modulation of PPARγ2 activity. These observations may have important therapeutic consequences and indicate a need for more detailed studies of PPARγ2 role in stem cell biology

    Chiral Symmetry Versus the Lattice

    Get PDF
    After mentioning some of the difficulties arising in lattice gauge theory from chiral symmetry, I discuss one of the recent attempts to resolve these issues using fermionic surface states in an extra space-time dimension. This picture can be understood in terms of end states on a simple ladder molecule.Comment: Talk at the meeting "Computer simulations studies in condensed matter physics XIV" Athens, Georgia, Feb. 19-24, 2001. 14 page

    Stationary states and phase diagram for a model of the Gunn effect under realistic boundary conditions

    Get PDF
    A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly stablished.Comment: 10 pages, 6 Post-Script figure

    Modifying the surface electronic properties of YBa2Cu3O7-delta with cryogenic scanning probe microscopy

    Full text link
    We report the results of a cryogenic study of the modification of YBa2Cu3O7-delta surface electronic properties with the probe of a scanning tunneling microscope (STM). A negative voltage applied to the sample during STM tunneling is found to modify locally the conductance of the native degraded surface layer. When the degraded layer is removed by etching, the effect disappears. An additional surface effect is identified using Scanning Kelvin Probe Microscopy in combination with STM. We observe reversible surface charging for both etched and unetched samples, indicating the presence of a defect layer even on a surface never exposed to air.Comment: 6 pages, 4 figures. To appear in Superconductor Science and Technolog

    Vector like gauge theories with almost massless fermions on the lattice

    Get PDF
    A truncation of the overlap (domain wall fermions) is studied and a criterion for reliability of the approximation is obtained by comparison to the exact overlap formula describing massless quarks. We also present a truncated version of regularized, pure gauge, supersymmetric models. The mechanism for generating almost masslessness is shown to be a generalized see-saw which can also be viewed as a version of Froggatt-Nielsen's method for obtaining natural large mass hierarchies. Viewed in this way the mechanism preserving the mass hierarchy naturally avoids preserving even approximately axial U(1). The new insights into the source of the mass hierarchy suggest ways to increase the efficiency of numerical simulations of QCD employing the truncated overlap.Comment: 35 pages, TeX, 4 figures using eps

    Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics

    Full text link
    We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.Comment: 28 pages, 19 figure

    Timescales of Massive Human Entrainment

    Get PDF
    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend concepts of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment - as expressed by the content and patterns of hundreds of thousands of messages on Twitter - during the 2012 US presidential debates. By time locking these data sources, we quantify the impact of the unfolding debate on human attention. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient moments in the debate: Mentions in social media start within 5-10 seconds after the moment; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment.Comment: 20 pages, 7 figures, 6 tables, 4 supplementary figures. 2nd version revised according to peer reviewers' comments: more detailed explanation of the methods, and grounding of the hypothese

    Theoretical studies of the historical development of the accounting discipline: a review and evidence

    Get PDF
    Many existing studies of the development of accounting thought have either been atheoretical or have adopted Kuhn's model of scientific growth. The limitations of this 35-year-old model are discussed. Four different general neo-Kuhnian models of scholarly knowledge development are reviewed and compared with reference to an analytical matrix. The models are found to be mutually consistent, with each focusing on a different aspect of development. A composite model is proposed. Based on a hand-crafted database, author co-citation analysis is used to map empirically the entire literature structure of the accounting discipline during two consecutive time periods, 1972–81 and 1982–90. The changing structure of the accounting literature is interpreted using the proposed composite model of scholarly knowledge development

    Low energy spin dynamics in the antiferromagnetic phase of CaFe2As2

    Full text link
    We present 75As nuclear magnetic resonance data in the paramagnetic and magnetic states of single crystal CaFe2As2. The electric field gradient and the internal magnetic field at the As sites change discontinuously below the first order structural transition at T0 = 169 K. In the magnetic state, we find a single value of the internal hyperfine field consistent with commensurate antiferromagnetic order of Fe moments pointing in the ab plane. The spin lattice relaxation rate shows Korringa behavior for T<T0/3, reflecting the metallic nature of the ordered state. Surprisingly, 1/T1 exhibits a small peak at 10 K, revealing the presence of slow spin fluctuations that may be associated with domain wall motion.Comment: 11 pages, 8 figure
    • 

    corecore