1,263 research outputs found
Local Magnetic Inhomogeneities in Lightly Doped BaFeAs
We report As NMR measurements in BaFeAs doped with Ni. Like
Co, Ni doping suppresses the antiferromagnetic and structural phase transitions
and gives rise to superconductivity for sufficiently large Ni doping. The spin
lattice relaxation rate diverges at , with a critical exponent consistent
with 3D ordering of local moments. In the ordered state the spectra quickly
broaden inhomogeneously with doping. We extract the average size of the ordered
moment as a function of doping, and show that a model in which the order
remains commensurate but with local amplitude variations in the vicinity of the
dopant fully explains our observations.Comment: 4 pages, 4 figure
Interpersonal Synergies
We present the perspective that interpersonal movement coordination results from establishing interpersonal synergies. Interpersonal synergies are higher-order control systems formed by coupling movement system degrees of freedom of two (or more) actors. Characteristic features of synergies identified in studies of intrapersonal coordination ā dimensional compression and reciprocal compensation ā are revealed in studies of interpersonal coordination that applied the uncontrolled manifold approach and principal component analysis to interpersonal movement tasks. Broader implications of the interpersonal synergy approach for movement science include an expanded notion of mechanism and an emphasis on interaction-dominant dynamics
Thermodynamic basis of the concept of "recombination resistances"
The concept of "recombination resistance" introduced by Shockley and Read
(Phys. Rev. 87, 835 (1952)) is discussed within the framework of the
thermodynamics of irreversible processes ruled by the principle of the minimum
rate of entropy production. It is shown that the affinities of recombination
processes represent "voltages" in a thermodynamic Ohm-like law where the net
rates of recombinations represent the "currents". The quantities thus found
allow for the definition of the "dissipated power" which is to be related to
the rate of entropy production of the recombination processes dealt with.Comment: Submitted to Phys. Rev.
PPARĪ³2 Regulates a Molecular Signature of Marrow Mesenchymal Stem Cells
Bone formation and hematopoiesis are anatomically juxtaposed and share common regulatory mechanisms. Bone marrow mesenchymal stromal/stem cells (MSC) contain a compartment that provides progeny with bone forming osteoblasts and fat laden adipocytes as well as fibroblasts, chondrocytes, and muscle cells. In addition, marrow MSC provide an environment for support of hematopoiesis, including the development of bone resorbing osteoclasts. The PPARĪ³2 nuclear receptor is an adipocyte-specific transcription factor that controls marrow MSC lineage allocation toward adipocytes and osteoblasts. Increased expression of PPARĪ³2 with aging correlates with changes in the MSC status in respect to both their intrinsic differentiation potential and production of signaling molecules that contribute to the formation of a specific marrow micro-environment. Here, we investigated the effect of PPARĪ³2 on MSC molecular signature in respect to the expression of gene markers associated exclusively with stem cell phenotype, as well as genes involved in the formation of a stem cell
supporting marrow environment. We found that PPARĪ³2 is a powerful modulator of stem cell-related gene expression. In general, PPARĪ³2 affects the expression of genes specific for the maintenance of stem cell phenotype, including LIF, LIF receptor, Kit ligand, SDF-1, Rex-1/Zfp42, and Oct-4. Moreover, the antidiabetic PPARĪ³ agonist TZD rosiglitazone specifically affects the expression of āstemnessā genes, including ABCG2, Egfr, and CD44. Our data indicate that aging and anti-diabetic TZD therapy may affect mesenchymal stem cell phenotype through modulation of PPARĪ³2 activity. These observations may have important therapeutic consequences and indicate a need for more detailed studies of PPARĪ³2 role in stem cell biology
- ā¦