1,341 research outputs found
The number and probability of canalizing functions
Canalizing functions have important applications in physics and biology. For
example, they represent a mechanism capable of stabilizing chaotic behavior in
Boolean network models of discrete dynamical systems. When comparing the class
of canalizing functions to other classes of functions with respect to their
evolutionary plausibility as emergent control rules in genetic regulatory
systems, it is informative to know the number of canalizing functions with a
given number of input variables. This is also important in the context of using
the class of canalizing functions as a constraint during the inference of
genetic networks from gene expression data. To this end, we derive an exact
formula for the number of canalizing Boolean functions of n variables. We also
derive a formula for the probability that a random Boolean function is
canalizing for any given bias p of taking the value 1. In addition, we consider
the number and probability of Boolean functions that are canalizing for exactly
k variables. Finally, we provide an algorithm for randomly generating
canalizing functions with a given bias p and any number of variables, which is
needed for Monte Carlo simulations of Boolean networks
Temporal patterns of gene expression via nonmetric multidimensional scaling analysis
Motivation: Microarray experiments result in large scale data sets that
require extensive mining and refining to extract useful information. We have
been developing an efficient novel algorithm for nonmetric multidimensional
scaling (nMDS) analysis for very large data sets as a maximally unsupervised
data mining device. We wish to demonstrate its usefulness in the context of
bioinformatics. In our motivation is also an aim to demonstrate that
intrinsically nonlinear methods are generally advantageous in data mining.
Results: The Pearson correlation distance measure is used to indicate the
dissimilarity of the gene activities in transcriptional response of cell
cycle-synchronized human fibroblasts to serum [Iyer et al., Science vol. 283,
p83 (1999)]. These dissimilarity data have been analyzed with our nMDS
algorithm to produce an almost circular arrangement of the genes. The temporal
expression patterns of the genes rotate along this circular arrangement. If an
appropriate preparation procedure may be applied to the original data set,
linear methods such as the principal component analysis (PCA) could achieve
reasonable results, but without data preprocessing linear methods such as PCA
cannot achieve a useful picture. Furthermore, even with an appropriate data
preprocessing, the outcomes of linear procedures are not as clearcut as those
by nMDS without preprocessing.Comment: 11 pages, 6 figures + online only 2 color figures, submitted to
Bioinformatic
Computing the output distribution and selection probabilities of a stack filter from the DNF of its positive Boolean function
Many nonlinear filters used in practise are stack filters. An algorithm is
presented which calculates the output distribution of an arbitrary stack filter
S from the disjunctive normal form (DNF) of its underlying positive Boolean
function. The so called selection probabilities can be computed along the way.Comment: This is the version published in Journal of Mathematical Imaging and
Vision, online first, 1 august 201
Entropy of complex relevant components of Boolean networks
Boolean network models of strongly connected modules are capable of capturing
the high regulatory complexity of many biological gene regulatory circuits. We
study numerically the previously introduced basin entropy, a parameter for the
dynamical uncertainty or information storage capacity of a network as well as
the average transient time in random relevant components as a function of their
connectivity. We also demonstrate that basin entropy can be estimated from
time-series data and is therefore also applicable to non-deterministic networks
models.Comment: 8 pages, 6 figure
Response of Boolean networks to perturbations
We evaluate the probability that a Boolean network returns to an attractor
after perturbing h nodes. We find that the return probability as function of h
can display a variety of different behaviours, which yields insights into the
state-space structure. In addition to performing computer simulations, we
derive analytical results for several types of Boolean networks, in particular
for Random Boolean Networks. We also apply our method to networks that have
been evolved for robustness to small perturbations, and to a biological
example
- …
