2,681 research outputs found
Functional Data Analysis in Electronic Commerce Research
This paper describes opportunities and challenges of using functional data
analysis (FDA) for the exploration and analysis of data originating from
electronic commerce (eCommerce). We discuss the special data structures that
arise in the online environment and why FDA is a natural approach for
representing and analyzing such data. The paper reviews several FDA methods and
motivates their usefulness in eCommerce research by providing a glimpse into
new domain insights that they allow. We argue that the wedding of eCommerce
with FDA leads to innovations both in statistical methodology, due to the
challenges and complications that arise in eCommerce data, and in online
research, by being able to ask (and subsequently answer) new research questions
that classical statistical methods are not able to address, and also by
expanding on research questions beyond the ones traditionally asked in the
offline environment. We describe several applications originating from online
transactions which are new to the statistics literature, and point out
statistical challenges accompanied by some solutions. We also discuss some
promising future directions for joint research efforts between researchers in
eCommerce and statistics.Comment: Published at http://dx.doi.org/10.1214/088342306000000132 in the
Statistical Science (http://www.imstat.org/sts/) by the Institute of
Mathematical Statistics (http://www.imstat.org
A Special Issue on Statistical Challenges and Opportunities in Electronic Commerce Research
This special issue is a product of the First Interdisciplinary Symposium on
Statistical Challenges and Opportunities in Electronic Commerce Research, which
took place on May 22--23, 2005, at the Robert H. Smith School of Business,
University of Maryland, College Park
(\url{www.smith.umd.edu/dit/statschallenges/}). The symposium brought together,
for the first time, researchers from statistics, information systems, and
related fields, all of whom work or are interested in empirical research
related to electronic commerce. The goal of the symposium was to cross the
borders, discuss joint research opportunities, expose this field and its
statistical challenges, and promote collaboration between the different fields.Comment: Published at http://dx.doi.org/10.1214/088342306000000178 in the
Statistical Science (http://www.imstat.org/sts/) by the Institute of
Mathematical Statistics (http://www.imstat.org
A flexible regression model for count data
Poisson regression is a popular tool for modeling count data and is applied
in a vast array of applications from the social to the physical sciences and
beyond. Real data, however, are often over- or under-dispersed and, thus, not
conducive to Poisson regression. We propose a regression model based on the
Conway--Maxwell-Poisson (COM-Poisson) distribution to address this problem. The
COM-Poisson regression generalizes the well-known Poisson and logistic
regression models, and is suitable for fitting count data with a wide range of
dispersion levels. With a GLM approach that takes advantage of exponential
family properties, we discuss model estimation, inference, diagnostics, and
interpretation, and present a test for determining the need for a COM-Poisson
regression over a standard Poisson regression. We compare the COM-Poisson to
several alternatives and illustrate its advantages and usefulness using three
data sets with varying dispersion.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS306 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
The BARISTA: A model for bid arrivals in online auctions
The arrival process of bidders and bids in online auctions is important for
studying and modeling supply and demand in the online marketplace. A popular
assumption in the online auction literature is that a Poisson bidder arrival
process is a reasonable approximation. This approximation underlies theoretical
derivations, statistical models and simulations used in field studies. However,
when it comes to the bid arrivals, empirical research has shown that the
process is far from Poisson, with early bidding and last-moment bids taking
place. An additional feature that has been reported by various authors is an
apparent self-similarity in the bid arrival process. Despite the wide evidence
for the changing bidding intensities and the self-similarity, there has been no
rigorous attempt at developing a model that adequately approximates bid
arrivals and accounts for these features. The goal of this paper is to
introduce a family of distributions that well-approximate the bid time
distribution in hard-close auctions. We call this the BARISTA process (Bid
ARrivals In STAges) because of its ability to generate different intensities at
different stages. We describe the properties of this model, show how to
simulate bid arrivals from it, and how to use it for estimation and inference.
We illustrate its power and usefulness by fitting simulated and real data from
eBay.com. Finally, we show how a Poisson bidder arrival process relates to a
BARISTA bid arrival process.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS117 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Smoothing sparse and unevenly sampled curves using semiparametric mixed models: An application to online auctions
Functional data analysis can be challenging when the functional objects are sampled only very sparsely and unevenly. Most approaches rely on smoothing to recover the underlying functional object from the data which can be difficult if the data is irregularly distributed. In this paper we present a new approach that can overcome this challenge. The approach is based on the ideas of mixed models. Specifically, we propose a semiparametric mixed model with boosting to recover the functional object. While the model can handle sparse and unevenly distributed data, it also results in conceptually more meaningful functional objects. In particular, we motivate our method within the framework of eBay's online auctions. Online auctions produce monotonic increasing price curves that are often correlated across two auctions. The semiparametric mixed model accounts for this correlation in a parsimonious way. It also estimates the underlying increasing trend from the data without imposing model-constraints. Our application shows that the resulting functional objects are conceptually more appealing. Moreover, when used to forecast the outcome of an online auction, our approach also results in more accurate price predictions compared to standard approaches. We illustrate our model on a set of 183 closed auctions for Palm M515 personal digital assistants
- …