114 research outputs found

    Application of arthroscopy of the knee joint in children

    Get PDF
    This article touches upon the question of possibility and expediency of application of arthroscopic technologies in surgical treatment of knee joint pathology. The statistical data of treatment of patients on the basis of children's traumatological and orthopedic Department of Clinics are given. On the basis of statistical analysis of clinical examples we conclude about the positive aspects of the use of arthroscopic techniques in pediatric orthopedic practice.В данной статье затрагивается вопрос возможности и целесообразности применения артроскопических технологий при оперативном лечении патологии коленного сустава. Приводятся статистические данные лечения пациентов на базе детского травматолого-ортопедического отделения Клиник СамГМУ. На основания статистического анализа клинических примеров делаем вывод о положительных моментах применения артроскопической методики в детской ортопедической практике

    Application of arthroscopy of the knee joint in children

    Get PDF
    this article touches upon the question of possibility and expediency of application of arthroscopic technologies in surgical treatment of knee joint pathology. The statistical data of treatment of patients on the basis of children's traumatological and orthopedic Department of Clinics are given. On the basis of statistical analysis of clinical examples we conclude about the positive aspects of the use of arthroscopic techniques in pediatric orthopedic practice.В данной статье затрагивается вопрос возможности и целесообразности применения артроскопических технологий при оперативном лечении патологии коленного сустава. Приводятся статистические данные лечения пациентов на базе детского травматолого-ортопедического отделения Клиник СамГМУ. На основания статистического анализа клинических примеров делаем вывод о положительных моментах применения артроскопической методики в детской ортопедической практике

    The Stem Cell Marker CD133 Associates with Enhanced Colony Formation and Cell Motility in Colorectal Cancer

    Get PDF
    CD133 is a membrane molecule that has been, controversially, reported as a CSC marker in colorectal cancer (CRC). In this study, we sought to clarify the expression and role of CD133 in CRC. Initially the size of the CD133−expressing (CD133+) population in eight well-described CRC cell lines was measured by flow cytometry and was found to range from 0% to >95%. The cell line HT29 has a CD133+ population of >95% and was chosen for functional evaluation of CD133 after gene knockdown by RNA interference. A time course assay showed that CD133 inhibition had no significant effect on cell proliferation or apoptosis. However, CD133 knockdown did result in greater susceptibility to staurosporine-induced apoptosis (p = 0.01) and reduction in cell motility (p<0.04). Since gene knockdown may cause “off-target” effects, the cell line SW480 (which has a CD133+ population of 40%) was sorted into pure CD133+ and CD133− populations to allow functional comparison of isogenic populations separated only by CD133 expression. In concordance with the knockdown experiments, a time course assay showed no significant proliferative differences between the CD133+/CD133− populations. Also greater resistance to staurosporine-induced apoptosis (p = 0.008), greater cell motility (p = 0.03) and greater colony forming efficiency was seen in the CD133+ population than the CD133− population in both 2D and 3D culture (p<0.0001 and p<0.003 respectively). Finally, the plasticity of CD133 expression in tumour cells was tested. Quantitative PCR analysis showed there was transcriptional repression in the CD133− population of SW480. Prolonged culture of a pure CD133− population resulted in re-emergence of CD133+ cells. We conclude that CD133 expression in CRCs is associated with some features attributable to stemness and that there is plasticity of CD133 expression. Further studies are necessary to delineate the mechanistic basis of these features

    Multiple Novel Nesprin-1 and Nesprin-2 Variants Act as Versatile Tissue-Specific Intracellular Scaffolds

    Get PDF
    <div><h3>Background</h3><p>Nesprins (<u>N</u>uclear <u>e</u>nvelope <u>s</u>pectrin-<u>r</u>epeat <u>p</u>roteins) are a novel family of giant spectrin-repeat containing proteins. The nesprin-1 and nesprin-2 genes consist of 146 and 116 exons which encode proteins of ∼1mDa and ∼800 kDa is size respectively when all the exons are utilised in translation. However emerging data suggests that the nesprins have multiple alternative start and termination sites throughout their genes allowing the generation of smaller isoforms.</p> <h3>Results</h3><p>In this study we set out to identify novel alternatively transcribed nesprin variants by screening the EST database and by using RACE analysis to identify cDNA ends. These two methods provided potential hits for alternative start and termination sites that were validated by PCR and DNA sequencing. We show that these alternative sites are not only expressed in a tissue specific manner but by combining different sites together it is possible to create a wide array of nesprin variants. By cloning and expressing small novel nesprin variants into human fibroblasts and U2OS cells we show localization to actin stress-fibres, focal adhesions, microtubules, the nucleolus, nuclear matrix and the nuclear envelope (NE). Furthermore we show that the sub-cellular localization of individual nesprin variants can vary depending on the cell type, suggesting any single nesprin variant may have different functions in different cell types.</p> <h3>Conclusions</h3><p>These studies suggest nesprins act as highly versatile tissue specific intracellular protein scaffolds and identify potential novel functions for nesprins beyond cytoplasmic-nuclear coupling. These alternate functions may also account for the diverse range of disease phenotypes observed when these genes are mutated.</p> </div

    Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium

    Get PDF
    BACKGROUND: Pluripotent embryonal carcinomas are good potential models, to study, "in vitro," the mechanisms that control differentiation during embryogenesis. The NTERA2cl.D1 (NT2/D1) cell line is a well known system of ectodermal differentiation. Retinoic acid (RA) induces a dorsal pattern of differentiation (essentially neurons) and bone morphogenetic protein (BMP) or hexamethylenebisacetamide (HMBA) induces a more ventral (epidermal) pattern of differentiation. However, whether these human cells could give rise to mesoderm derivatives as their counterpart in mouse remained elusive. We analyzed the morphological characteristics and transcriptional activation of genes pertinent in cardiac muscle and endothelium differentiation, during the growth of NT2/D1 cells in an inductive angiomyogenic medium with or without Bone Morphogenetic Protein 2 (BMP2). RESULTS: Our experiments showed that NT2/D1 maintains their typical actin organization in angiomyogenic medium. Although the beta myosin heavy chain gene was never detected, all the other 15 genes analyzed maintained their expression throughout the time course of the experiment. Among them were early and late cardiac, endothelial, neuronal and teratocarcinoma genes. CONCLUSION: Our results suggest that despite the NT2/D1 cells natural tendency to differentiate into neuroectodermal lineages, they can activate genes of mesodermal lineages. Therefore, we believe that these pluripotent cells might still be a good model to study biological development of mesodermal derivatives, provided the right culture conditions are met

    CD133+ Anaplastic Thyroid Cancer Cells Initiate Tumors in Immunodeficient Mice and Are Regulated by Thyrotropin

    Get PDF
    Anaplastic thyroid cancer (ATC) is one of the most lethal human malignancies. Its rapid onset and resistance to conventional therapeutics contribute to a mean survival of six months after diagnosis and make the identification of thyroid-cancer-initiating cells increasingly important.In prior studies of ATC cell lines, CD133(+) cells exhibited stem-cell-like features such as high proliferation, self-renewal and colony-forming ability in vitro. Here we show that transplantation of CD133(+) cells, but not CD133(-) cells, into immunodeficient NOD/SCID mice is sufficient to induce growth of tumors in vivo. We also describe how the proportion of ATC cells that are CD133(+) increases dramatically over three months of culture, from 7% to more than 80% of the total. This CD133(+) cell pool can be further separated by flow cytometry into two distinct populations: CD133(+/high) and CD133(+/low). Although both subsets are capable of long-term tumorigenesis, the rapidly proliferating CD133(+/high) cells are by far the most efficient. They also express high levels of the stem cell antigen Oct4 and the receptor for thyroid stimulating hormone, TSHR. Treating ATC cells with TSH causes a three-fold increase in the numbers of CD133(+) cells and elicits a dose-dependent up-regulation of the expression of TSHR and Oct4 in these cells. More importantly, immunohistochemical analysis of tissue specimens from ATC patients indicates that CD133 is highly expressed on tumor cells but not on neighboring normal thyroid cells.To our knowledge, this is the first report indicating that CD133(+) ATC cells are solely responsible for tumor growth in immunodeficient mice. Our data also give a unique insight into the regulation of CD133 by TSH. These highly tumorigenic CD133(+) cells and the activated TSH signaling pathway may be useful targets for future ATC therapies

    CD133+ adult human retinal cells remain undifferentiated in Leukaemia Inhibitory Factor (LIF)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD133 is a cell surface marker of haematopoietic stem and progenitor cells. Leukaemia inhibitory factor (LIF), sustains proliferation and not differentiation of embryonic stem cells. We used CD133 to purify adult human retinal cells and aimed to determine what effect LIF had on these cultures and whether they still had the ability to generate neurospheres.</p> <p>Methods</p> <p>Retinal cell suspensions were derived from adult human post-mortem tissue with ethical approval. With magnetic automated cell sorting (MACS) CD133<sup>+ </sup>retinal cells were enriched from post mortem adult human retina. CD133<sup>+ </sup>retinal cell phenotype was analysed by flow cytometry and cultured cells were observed for proliferative capacity, neuropshere generation and differentiation with or without LIF supplementation.</p> <p>Results</p> <p>We demonstrated purification (to 95%) of CD133<sup>+ </sup>cells from adult human postmortem retina. Proliferating cells were identified through BrdU incorporation and expression of the proliferation markers Ki67 and Cyclin D1. CD133<sup>+ </sup>retinal cells differentiated whilst forming neurospheres containing appropriate lineage markers including glia, neurons and photoreceptors. LIF maintained CD133<sup>+ </sup>retinal cells in a proliferative and relatively undifferentiated state (Ki67, Cyclin D1 expression) without significant neurosphere generation. Differentiation whilst forming neurospheres was re-established on LIF withdrawal.</p> <p>Conclusion</p> <p>These data support the evidence that CD133 expression characterises a population of cells within the resident adult human retina which have progenitor cell properties and that their turnover and differentiation is influenced by LIF. This may explain differences in retinal responses observed following disease or injury.</p

    Prognostic impact of MGMT promoter methylation and MGMT and CD133 expression in colorectal adenocarcinoma

    Get PDF
    Background: New biomarkers are needed for the prognosis of advanced colorectal cancer, which remains incurable by conventional treatments. O6-methylguanine DNA methyltransferase (MGMT) methylation and protein expression have been related to colorectal cancer treatment failure and tumor progression. Moreover, the presence in these tumors of cancer stem cells, which are characterized by CD133 expression, has been associated with chemoresistance, radioresistance, metastasis, and local recurrence. The objective of this study was to determine the prognostic value of CD133 and MGMT and their possible interaction in colorectal cancer patients. Methods: MGMT and CD133 expression was analyzed by immunohistochemistry in 123 paraffin-embedded colorectal adenocarcinoma samples, obtaining the percentage staining and intensity. MGMT promoter methylation status was obtained by using bisulfite modification and methylation-specific PCR (MSP). These values were correlated with clinical data, including overall survival (OS), disease-free survival (DFS), tumor stage, and differentiation grade. Results: Low MGMT expression intensity was significantly correlated with shorter OS and was a prognostic factor independently of treatment and histopathological variables. High percentage of CD133 expression was significantly correlated with shorter DFS but was not an independent factor. Patients with low-intensity MGMT expression and ≥50% CD133 expression had the poorest DFS and OS outcomes. Conclusions: Our results support the hypothesis that MGMT expression may be an OS biomarker as useful as tumor stage or differentiation grade and that CD133 expression may be a predictive biomarker of DFS. Thus, MGMT and CD133 may both be useful for determining the prognosis of colorectal cancer patients and to identify those requiring more aggressive adjuvant therapies. Future studies will be necessary to determine its clinical utility.This study was supported by FEDER, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I + D + I), Instituto de Salud Carlos III (FIS) through Project no. PI11/01862 and by the Consejería de Salud de la Junta de Andalucía through Project no. PI-0338. The authors are grateful to the Biobank of the Andalusian Public Healthcare System (Granada, Spain) for invaluable assistance
    corecore