115 research outputs found
SMALL POLARONS IN REAL CRYSTALS - CONCEPTS AND PROBLEMS
Much of small polaron theory is based on highly idealized models, often essentially a continuum description with a single vibrational frequency. These models ignore much of the wealth of experimental data, which find interpretation in many atomistic simulations. We review here a range of properties of small polarons in real, rather than model, systems. The phenomena fall into three main classes: (i) the mechanisms and dynamics of self-trapping of polarons; (ii) static properties-the relative energies of large and small polarons, the optical transitions expected, their effect on positions of other ions and on lattice vibrations, their population in thermal equilibrium, and so on; (iii) small polaron hopping and diffusion. We discuss the key concepts and methods of calculation of polarons, and explore the properties of self-trapped holes and excitons in ionic crystals, and those of an excess electron in liquid water
Structure and spectroscopy of surface defects from scanning force spectroscopy: theoetical predictions
A possibility to study surface defects by combining noncontact scanning force microscopy (SFM) imaging with atomically resolved optical spectroscopy is demonstrated by modeling an impurity Cr3+ ion at the MgO(001) surface with a SFM tip. Using a combination of the atomistic simulation and the ab initio electronic structure calculations, we predict a topographic noncontact SFM image of the defect and show that its optical transitions can be either enhanced or suppressed depending on the tip atomistic structure and its position relative to the defect. These effects should allow identification of certain impurity species through competition between radiative and nonradiative transitions
The prediction of metastable impact electronic spectra (MIES): perfect and defective MgO(001) surfaces by state-of-the-art methods
We re-examine the theory of metastable impact electron spectroscopy (MIES) in its application to insulating surfaces. This suggests a quantitative approach which takes advantage of recent developments in highly efficient many-electron computational techniques. It gives a basis to the interpretation of experimental MIES spectra for perfect and defective surfaces. Our method is based on a static approach to predicting Auger de-excitation (AD) rates of He*(1s2s) projectiles. A key quantity is the surface density of states (DOS) projected on the Is orbital of the He* atom, which is calculated along its trajectory. We use density functional theory within both supercell geometry and embedded cluster models to calculate MIES spectra for the perfect MgO surface and for an MgO surface with different concentrations of adsorbed oxygen atoms. First we calculate the Auger de-excitation rates at various positions of the projectile above the surface. To predict MIES spectra, we integrate over projectile trajectories, with a subsequent weighted averaging with respect to various lateral positions of He* above the MgO surface unit cell. It is important to examine final-state effects for a correct comparison between theory and experiment, especially when there are localised defect states. (C) 2000 Elsevier Science B.V. All rights reserved
Electron trapping at point defects on hydroxylated silica surfaces
The origin of electron trapping and negative charging of hydroxylated silica surfaces is predicted based on accurate quantum-mechanical calculations. The calculated electron affinities of the two dominant neutral paramagnetic defects, the nonbridging oxygen center, equivalent to Si-O-center dot, and the silicon dangling bond, equivalent to Si-center dot, demonstrate that both defects are deep electron traps and can form the corresponding negatively charged defects. We predict the structure and optical absorption energies of these diamagnetic defects
Theoretical modeling of charge trapping in crystalline and amorphous Al2O3
The characteristics of intrinsic electron and hole trapping in crystalline and amorphous Al2O3 have been studied using density functional theory (DFT). Special attention was paid to enforcing the piece-wise linearity of the total energy with respect to electron number through the use of a range separated, hybrid functional PBE0-TC-LRC (Guidon et al 2009 J. Chem. Theory Comput. 5 3010) in order to accurately model the behaviour of localized states. The tuned functional is shown to reproduce the geometric and electronic structures of the perfect crystal as well as the spectroscopic characteristics of MgAl hole centre in corundum Ξ±-Al2O3. An ensemble of ten amorphous Al2O3 structures was generated using classical molecular dynamics and a melt and quench method and their structural characteristics compared with the experimental data. The electronic structure of amorphous systems was characterized using the inverse participation ratio method. Electrons and holes were then introduced into both crystalline and amorphous alumina structures and their properties calculated. Holes are shown to trap spontaneously in both crystalline and amorphous alumina. In the crystalline phase they localize on single O ion with the trapping energy of 0.38βeV. In amorphous phase, holes localize on two nearest neighbour oxygen sites with an average trapping energy of 1.26βeV, with hole trapping sites separated on average by about 8.0 Γ
. No electron trapping is observed in the material. Our results suggest that trapping of positive charge can be much more severe and stable in amorphous alumina rather than in crystalline samples
Electron localization and a confined electron gas in nanoporous inorganic electrides
The nanoporous main group oxide 12CaO.7Al(2)O(3) (C12A7) can be transformed from a wide-gap insulator to an electride where electrons substitute anions in cages constituting a positive frame. Our ab initio calculations of the electronic structure of this novel material give a consistent explanation of its high conductivity and optical properties. They show that the electrons confined in the inert positive frame are localized in cages and undergo hopping between neighboring cages. The results are useful for the understanding of behavior of confined electron gas of different topology and electron-phonon coupling, and for designing new transparent conductors, electron emitters, and electrides
A mechanism of Cu work function reduction in CsBr/Cu photocathodes
Thin films of CsBr deposited on Cu(100) have been proposed as next-generation photocathode materials for applications in particle accelerators and free-electron lasers. However, the mechanisms underlying an improved photocathode performance as well as their long-term stability remain poorly understood. We present Density Functional Theory (DFT) calculations of the work function reduction following the application of CsBr thin film coatings to Cu photocathodes. The effects of both flat and rough interface and van der Waals forces are examined. Calculations suggest that CsBr films can reduce the Cu(100) work function by about 1.5 eV, which would explain the observed increase in quantum efficiency (QE) of coated vs. uncoated photocathodes. A model explaining the experimentally observed laser activation of photocathodes is provided whereby the photo-induced creation of Br vacancies and Cs-Br di-vacancies and their subsequent diffusion to the Cu/CsBr interface lead to a further increase in QE after a period of laser irradiation
Structure and luminescence of intrinsic localized states in sodium silicate glasses
Sodium silicate glasses exhibit a characteristic luminescence with a maximum at about 3.4 eV, which is thought to be determined by optical excitation of local glass structures, called L centers. To investigate the atomic and electronic structures of these centers, we calculated the electronic properties of the ground and excited states of a sodium silicate glass using classical and ab initio methods. Classical molecular dynamics was used to generate glass models of
Na
2
O
β
3
SiO
2
molar composition, and the density functional theory (DFT), with hybrid functionals, was used to identify and characterize the geometric and electronic structures of L centers. The ground and excited
L
β
center states are studied, and their calculated excitation and luminescence transition energies are in good agreement with experimental data. The results confirm that the lowest triplet excited states in sodium silicate glass are associated with small clusters of Na ions and nonbridging oxygen atoms. These clusters serve as structural precursors for the localization of the excited states, and the broad distribution of the luminescence energies is correlated with the short-range order of the Na cations. The atomic and electronic structures of the electron
E
β
1
and hole
H
+
1
centers are also studied. These results provide a more detailed insight into the atomistic structure of localized states in these important glasses
Interactions of hydrogen with amorphous hafnium oxide
We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (
a
β
HfO
2
) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and
β
1
charged states are thermodynamically more stable than the neutral state) . Our results show that in
a
β
HfO
2
hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016).] forming a
[
e
β
t
r
+
O
β
H
]
center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with
a
β
HfO
2
and the electrical behavior of amorphous hafnia films in CMOS devices
- β¦