19 research outputs found

    Assigning functions to genes: identification of S-phase expressed genes in Leishmania major based on post-transcriptional control elements

    Get PDF
    Assigning functions to genes is one of the major challenges of the post-genomic era. Usually, functions are assigned based on similarity of the coding sequences to sequences of known genes, or by identification of transcriptional cis-regulatory elements that are known to be associated with specific pathways or conditions. In trypanosomatids, where regulation of gene expression takes place mainly at the post-transcriptional level, new approaches for function assignment are needed. Here we demonstrate the identification of novel S-phase expressed genes in Leishmania major, based on a post-transcriptional control element that was recognized in Crithidia fasciculata as involved in the cell cycle-dependent expression of several nuclear and mitochondrial S-phase expressed genes. Hypothesizing that a similar regulatory mechanism is manifested in L.major, we have applied a computational search for similar control elements in the genome of L.major. Our computational scan yielded 132 genes, of which 33% are homologues of known DNA metabolism genes and 63% lack any annotation. Experimental testing of seven of these genes revealed that their mRNAs cycle throughout the cell cycle, reaching a maximum level during S-phase or just prior to it. It is suggested that screening for post-transcriptional control elements associated with a specific function provides an efficient method for assigning functions to trypanosomatid genes

    Intramitochondrial Localization of Universal Minicircle Sequence-Binding Protein, a Trypanosomatid Protein That Binds Kinetoplast Minicircle Replication Origins

    Get PDF
    Kinetoplast DNA (kDNA), the mitochondrial DNA of the trypanosomatid Crithidia fasciculata, is a unique structure containing 5,000 DNA minicircles topologically linked into a massive network. In vivo, the network is condensed into a disk-shaped structure. Replication of minicircles initiates at unique origins that are bound by universal minicircle sequence (UMS)-binding protein (UMSBP), a sequence-specific DNA-binding protein. This protein, encoded by a nuclear gene, localizes within the cell's single mitochondrion. Using immunofluorescence, we found that UMSBP localizes exclusively to two neighboring sites adjacent to the face of the kDNA disk nearest the cell's flagellum. This site is distinct from the two antipodal positions at the perimeter of the disk that is occupied by DNA polymerase β, topoisomerase II, and a structure-specific endonuclease. Although we found constant steady-state levels of UMSBP mRNA and protein and a constant rate of UMSBP synthesis throughout the cell cycle, immunofluorescence indicated that UMSBP localization within the kinetoplast is not static. The intramitochondrial localization of UMSBP and other kDNA replication enzymes significantly clarifies our understanding of the process of kDNA replication

    Direct monitoring of the stepwise condensation of kinetoplast DNA networks

    No full text
    Abstract Condensation and remodeling of nuclear genomes play an essential role in the regulation of gene expression and replication. Yet, our understanding of these processes and their regulatory role in other DNA-containing organelles, has been limited. This study focuses on the packaging of kinetoplast DNA (kDNA), the mitochondrial genome of kinetoplastids. Severe tropical diseases, affecting large human populations and livestock, are caused by pathogenic species of this group of protists. kDNA consists of several thousand DNA minicircles and several dozen DNA maxicircles that are linked topologically into a remarkable DNA network, which is condensed into a mitochondrial nucleoid. In vitro analyses implicated the replication protein UMSBP in the decondensation of kDNA, which enables the initiation of kDNA replication. Here, we monitored the condensation of kDNA, using fluorescence and atomic force microscopy. Analysis of condensation intermediates revealed that kDNA condensation proceeds via sequential hierarchical steps, where multiple interconnected local condensation foci are generated and further assemble into higher order condensation centers, leading to complete condensation of the network. This process is also affected by the maxicircles component of kDNA. The structure of condensing kDNA intermediates sheds light on the structural organization of the condensed kDNA network within the mitochondrial nucleoid

    Trypanosoma brucei UMSBP2 is a single-stranded telomeric DNA binding protein essential for chromosome end protection

    No full text
    Universal minicircle sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind a single-stranded G-rich sequence, UMS, conserved at the replication origins of the mitochondrial (kinetoplast) DNA of trypanosomatids. Here, we report that Trypanosoma brucei TbUMSBP2, which has been previously proposed to function in the replication and segregation of the mitochondrial DNA, colocalizes with telomeres at the nucleus and is essential for their structure, protection and function. Knockdown of TbUMSBP2 resulted in telomere clustering in one or few foci, phosphorylation of histone H2A at the vicinity of the telomeres, impaired nuclear division, endoreduplication and cell growth arrest. Furthermore, TbUMSBP2 depletion caused rapid reduction in the G-rich telomeric overhang, and an increase in C-rich single-stranded telomeric DNA and in extrachromosomal telomeric circles. These results indicate that TbUMSBP2 is essential for the integrity and function of telomeres. The sequence similarity between the mitochondrial UMS and the telomeric overhang and the finding that UMSBPs bind both sequences suggest a common origin and/or function of these interactions in the replication and maintenance of the genomes in the two organelles. This feature could have converged or preserved during the evolution of the nuclear and mitochondrial genomes from their ancestral (likely circular) genome in early diverged protists

    The kinetoplast DNA of the Australian trypanosome, Trypanosoma copemani, shares features with Trypanosoma cruzi and Trypanosoma lewisi

    Get PDF
    Kinetoplast DNA (kDNA) is the mitochondrial genome of trypanosomatids. It consists of a few dozen maxicircles and several thousand minicircles, all catenated topologically to form a two-dimensional DNA network. Minicircles are heterogeneous in size and sequence among species. They present one or several conserved regions that contain three highly conserved sequence blocks. CSB-1 (10 bp sequence) and CSB-2 (8 bp sequence) present lower interspecies homology, while CSB-3 (12 bp sequence) or the Universal Minicircle Sequence is conserved within most trypanosomatids. The Universal Minicircle Sequence is located at the replication origin of the minicircles, and is the binding site for the UMS binding protein, a protein involved in trypanosomatid survival and virulence. Here, we describe the structure and organisation of the kDNA of Trypanosoma copemani, a parasite that has been shown to infect mammalian cells and has been associated with the drastic decline of the endangered Australian marsupial, the woylie (Bettongia penicillata). Deep genomic sequencing showed that T. copemani presents two classes of minicircles that share sequence identity and organisation in the conserved sequence blocks with those of Trypanosoma cruzi and Trypanosoma lewisi. A 19,257 bp partial region of the maxicircle of T. copemani that contained the entire coding region was obtained. Comparative analysis of the T. copemani entire maxicircle coding region with the coding regions of T. cruzi and T. lewisi showed they share 71.05% and 71.28% identity, respectively. The shared features in the maxicircle/minicircle organisation and sequence between T. copemani and T. cruzi/T. lewisi suggest similarities in their process of kDNA replication, and are of significance in understanding the evolution of Australian trypanosomes

    A Broad RNA Virus Survey Reveals Both miRNA Dependence and Functional Sequestration.

    No full text
    Small non-coding RNAs have emerged as key modulators of viral infection. However, with the exception of hepatitis C virus, which requires the liver-specific microRNA (miRNA)-122, the interactions of RNA viruses with host miRNAs remain poorly characterized. Here, we used crosslinking immunoprecipitation (CLIP) of the Argonaute (AGO) proteins to characterize strengths and specificities of miRNA interactions in the context of 15 different RNA virus infections, including several clinically relevant pathogens. Notably, replication of pestiviruses, a major threat to milk and meat industries, critically depended on the interaction of cellular miR-17 and let-7 with the viral 3' UTR. Unlike canonical miRNA interactions, miR-17 and let-7 binding enhanced pestivirus translation and RNA stability. miR-17 sequestration by pestiviruses conferred reduced AGO binding and functional de-repression of cellular miR-17 targets, thereby altering the host transcriptome. These findings generalize the concept of RNA virus dependence on cellular miRNAs and connect virus-induced miRNA sequestration to host transcriptome regulation
    corecore