6 research outputs found

    The Law of Facebook: Borders, Regulation and Global Social Media

    Get PDF
    This paper provides an outline of the talks presented at the webinar event “The Law of Facebook: Borders, Regulation and Global Social Media” on 15 May 2020, jointly hosted by the City Law School Jean Monnet Chair of Law & Transatlantic Relations, the Institute for the study of European Law (ISEL) and the International Law and Affairs Group (ILAG)

    АbĐŸut a theoretical yield of glucose from starch

    No full text
    Starch is the raw materials for production of crystal food glucose. With at enzyme conversion of the high purity starch, it is possible to receive glucosic syrups of a glucose equivalent (GE) 98%, where there is about 95% glucose and maltose and maltotriose – of about 5%. Starch hydrolysis is carried out with a gain of solids. Thus, 100 kg of amylum is possible to give up to 109.81 kg of glucose syrup on dry basis. Taking in account the losses at manufacture steps a yield can decrease to 105.61 kg. The purified glucose syrup is concentrated up to 73–75% of dry matters and goes to a crystallization step. Crystallization of glucose is carried out in a supersaturated solution within 56–70 hours at reduced temperature from 46–48 °C to 24–26 °C, resulting a mixture of glucose crystals and an intercrystal run-off syrup called a massecuite. The crystallization process is stopped when a 50% of crystals content in massecuite is reached. At the same time glucose yield will be 105.61/2 = 52.8%. Crystallization is carried out according to the single-stage scheme, with partial return of the end product – hydrol into the hydrolised syrup. Then the massecuite is sent to a centrifugation step for dividing glucose crystals and a run-off syrup, which is partially returned to the initial syrup to reduce in GE. The second part of the run-off syrup goes to realization. It must be kept in mind: the higher GE of the glucose syrup sent to a crystallization step, the more quantity of a hydrol is possible to be returned to hydrolysed syrup. Therefore, it is in a resulted a higher yield of glucose crystals. On the basis of the carried-out calculations the computer program was made with which it is possible to define a theoretical glucose and a hydrol yield, while changing values of a hydrolysed syrup. The higher GE values of a hydrolysed syrup are the higher yield of crystal glucose and the lower one of hydrol are. So, at 98% GE of a hydrolysed syrup it is possible to return about 64.66 kg of a hydrol to 105.61 kg of syrup the glucose yield will increase up to 85%, and at the same time a hydrol yield will be (105,61 – 85) i.e. 20.61%

    GRANULOMETRIC COMPOSITION OF GRANULAR STARCH SWEETENERS

    No full text
    There was developed a technology to produce starch sweeteners in granular form, which allows to obtain ready product in dry freeflowing state, without separation of mother liquor with valuable nutritional components, for short period of time. During granulation dextrose is crystallized on the surface of seed granules and it increases their size up to determined value, after that granules are destroyed, forming new centers of granules formation. The sizes of granules are in the range of 3–7 mm. The analysis of experimental data shows, that density of granules is decrease with increase of size of granules. Increasing the load for crushing granules at increase of their size is connected with increase of strength due to its mass increase. However, with increase of granule size the specific load per unit of cross-sectional area (tensile strength) is decreased. With increase of moisture content of granules the load for destruction is decreased. The tensile strength is decreased with increase of granule size and moisture content. The value of the optimal average granule size is determined using experimental data on change of critical stress arising inside of granules of different size, from the action of load, determined experimentally for each granule, and specific load in granules of seed layer from external forces at mixing of granule layer. Substituting the known values corresponding to experimental installation, in equations, obtained based on experimental data, we find optimal average size of granule for existing boundary conditions, obtained in the experimental installation d = 3,78 mm. The size of granule at starch sweeteners production could be change in certain limits depending on the height of seed layer of granules in granulator. The greater height of seed layer, the smaller average size of granules obtained at granulation
    corecore