7 research outputs found

    Stochastic Inflation Revisited: Non-Slow Roll Statistics and DBI Inflation

    Full text link
    Stochastic inflation describes the global structure of the inflationary universe by modeling the super-Hubble dynamics as a system of matter fields coupled to gravity where the sub-Hubble field fluctuations induce a stochastic force into the equations of motion. The super-Hubble dynamics are ultralocal, allowing us to neglect spatial derivatives and treat each Hubble patch as a separate universe. This provides a natural framework in which to discuss probabilities on the space of solutions and initial conditions. In this article we derive an evolution equation for this probability for an arbitrary class of matter systems, including DBI and k-inflationary models, and discover equilibrium solutions that satisfy detailed balance. Our results are more general than those derived assuming slow roll or a quasi-de Sitter geometry, and so are directly applicable to models that do not satisfy the usual slow roll conditions. We discuss in general terms the conditions for eternal inflation to set in, and we give explicit numerical solutions of highly stochastic, quasi-stationary trajectories in the relativistic DBI regime. Finally, we show that the probability for stochastic/thermal tunneling can be significantly enhanced relative to the Hawking-Moss instanton result due to relativistic DBI effects.Comment: 38 pages, 2 figures. v3: minor revisions; version accepted into JCA

    Reconnection of Non-Abelian Cosmic Strings

    Full text link
    Cosmic strings in non-abelian gauge theories naturally gain a spectrum of massless, or light, excitations arising from their embedding in color and flavor space. This opens up the possibility that colliding strings miss each other in the internal space, reducing the probability of reconnection. We study the topology of the non-abelian vortex moduli space to determine the outcome of string collision. Surprisingly we find that the probability of classical reconnection in this system remains unity, with strings passing through each other only for finely tuned initial conditions. We proceed to show how this conclusion can be changed by symmetry breaking effects, or by quantum effects associated to fermionic zero modes, and present examples where the probability of reconnection in a U(N) gauge theory ranges from 1/N for low-energy collisions to one at higher energies.Comment: 25 Pages, 3 Figures. v2: comment added, reference adde

    Duality Cascade in Brane Inflation

    Full text link
    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude comparing to that in previously studied large field models. In the IR DBI scenario where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.Comment: Corrections in Eq.(5.47), Eq (5.48), Eq(5.49) and Fig

    Inter-brane interactions in compact spaces and brane inflation

    No full text
    It has been pointed out that brane-anti-brane inflation without warped geometry is not viable due to compactification effects (in the simplified scenario where the inflaton is decoupled from the compactification moduli). We show that the inflationary scenario with branes at a small angle in this simplified scenario remains viable. We also point out that brane-anti-brane inflation may still be viable under some special conditions. We also discuss a way to treat potentials in compact spaces that should be useful in the analysis of more realistic brane inflationary scenarios. © 2004 IOP Publishing Ltd
    corecore