551 research outputs found

    The morphological dependent Tully-Fisher relation of spiral galaxies

    Full text link
    The Tully-Fisher relation of spiral galaxies shows notable dependence on morphological types, with earlier type spirals having systematically lower luminosity at fixed maximum rotation velocity VmaxV_{max}. This decrement of luminosity is more significant in shorter wavelengths. By modeling the rotation curve and stellar population of different morphological type spiral galaxies in combination, we find the VmaxV_{max} of spiral galaxies is weakly dependent on the morphological type, whereas the difference of the stellar population originating from the bulge disk composition effect mainly account for the morphological type dependence of the Tully-Fisher relation.Comment: 8 pages, 3 figures, ApJ accepte

    Photometric Metallicity Calibration with SDSS and SCUSS and its Application to distant stars in the South Galactic Cap

    Full text link
    Based on SDSS g, r and SCUSS (South Galactic Cap of u-band Sky Survey) uu photometry, we develop a photometric calibration for estimating the stellar metallicity from ugu-g and grg-r colors by using the SDSS spectra of 32,542 F- and G-type main sequence stars, which cover almost 37003700 deg2^{2} in the south Galactic cap. The rms scatter of the photometric metallicity residuals relative to spectrum-based metallicity is 0.140.14 dex when gr<0.4g-r<0.4, and 0.160.16 dex when gr>0.4g-r>0.4. Due to the deeper and more accurate magnitude of SCUSS uu band, the estimate can be used up to the faint magnitude of g=21g=21. This application range of photometric metallicity calibration is wide enough so that it can be used to study metallicity distribution of distant stars. In this study, we select the Sagittarius (Sgr) stream and its neighboring field halo stars in south Galactic cap to study their metallicity distribution. We find that the Sgr stream at the cylindrical Galactocentric coordinate of R19R\sim 19 kpc, z14\left| z\right| \sim 14 kpc exhibits a relative rich metallicity distribution, and the neighboring field halo stars in our studied fields can be modeled by two-Gaussian model, with peaks respectively at [Fe/H]=1.9=-1.9 and [Fe/H]=1.5=-1.5.Comment: 8 pages, 7 figures, Accepted for publication in MNRA
    corecore