4 research outputs found

    A Structural Model of the Staphylococcus aureus ClfA–Fibrinogen Interaction Opens New Avenues for the Design of Anti-Staphylococcal Therapeutics

    Get PDF
    The fibrinogen (Fg) binding MSCRAMM Clumping factor A (ClfA) from Staphylococcus aureus interacts with the C-terminal region of the fibrinogen (Fg) γ-chain. ClfA is the major virulence factor responsible for the observed clumping of S. aureus in blood plasma and has been implicated as a virulence factor in a mouse model of septic arthritis and in rabbit and rat models of infective endocarditis. We report here a high-resolution crystal structure of the ClfA ligand binding segment in complex with a synthetic peptide mimicking the binding site in Fg. The residues in Fg required for binding to ClfA are identified from this structure and from complementing biochemical studies. Furthermore, the platelet integrin αIIbβ3 and ClfA bind to the same segment in the Fg γ-chain but the two cellular binding proteins recognize different residues in the common targeted Fg segment. Based on these differences, we have identified peptides that selectively antagonize the ClfA-Fg interaction. The ClfA-Fg binding mechanism is a variant of the “Dock, Lock and Latch” mechanism previously described for the Staphylococcus epidermidis SdrG–Fg interaction. The structural insights gained from analyzing the ClfANFg peptide complex and identifications of peptides that selectively recognize ClfA but not αIIbβ3 may allow the design of novel anti-staphylococcal agents. Our results also suggest that different MSCRAMMs with similar structural organization may have originated from a common ancestor but have evolved to accommodate specific ligand structures

    β-Neurexin Is a Ligand for the Staphylococcus aureus MSCRAMM SdrC

    Get PDF
    Gram-positive bacteria contain a family of surface proteins that are covalently anchored to the cell wall of the organism. These cell-wall anchored (CWA) proteins appear to play key roles in the interactions between pathogenic organisms and the host. A subfamily of the CWA has a common structural organization with multiple domains adopting characteristic IgG-like folds. The identified microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) belong to this subfamily, as does SdrC from S. aureus. However, an interactive host ligand for the putative MSCRAMM SdrC was not previously identified. We have screened a phage display peptide library and identified a peptide sequence found in β-neurexin that binds SdrC. A synthetic peptide corresponding to the identified sequence as well as a recombinant form of the β-neurexin 1 exodomain binds SdrC with high affinity and specificity. Furthermore, expression of SdrC on bacteria greatly enhances microbial adherence to cultured mammalian cells expressing β-neurexin on their surface. Taken together, our experimental results demonstrate that β-neurexin is a ligand for SdrC. This interaction involves a specific sequence located in the N-terminal region of the mammalian protein and the N(2)N(3) domain of the MSCRAMM. The fact that these two proteins interact when expressed on the appropriate cells demonstrates the functionality of the interaction. Possible implications of this interaction are discussed

    A ‘Collagen Hug' Model for Staphylococcus aureus CNA binding to collagen

    No full text
    The structural basis for the association of eukaryotic and prokaryotic protein receptors and their triple-helical collagen ligand remains poorly understood. Here, we present the crystal structures of a high affinity subsegment of the Staphylococcus aureus collagen-binding CNA as an apo-protein and in complex with a synthetic collagen-like triple helical peptide. The apo-protein structure is composed of two subdomains (N1 and N2), each adopting a variant IgG-fold, and a long linker that connects N1 and N2. The structure is stabilized by hydrophobic inter-domain interactions and by the N2 C-terminal extension that complements a β-sheet on N1. In the ligand complex, the collagen-like peptide penetrates through a spherical hole formed by the two subdomains and the N1–N2 linker. Based on these two structures we propose a dynamic, multistep binding model, called the ‘Collagen Hug' that is uniquely designed to allow multidomain collagen binding proteins to bind their extended rope-like ligand
    corecore