97 research outputs found

    Primordial Magnetic Fields in the Post-recombination Era and Early Reionization

    Full text link
    We explore the ways in which primordial magnetic fields influence the thermal and ionization history of the post-recombination universe. After recombination the universe becomes mostly neutral resulting also in a sharp drop in the radiative viscosity. Primordial magnetic fields can then dissipate their energy into the intergalactic medium (IGM) via ambipolar diffusion and, for small enough scales, by generating decaying MHD turbulence. These processes can significantly modify the thermal and ionization history of the post-recombination universe. We show that the dissipation effects of magnetic fields which redshifts to a present value B0=3×109B_{0}=3\times 10^{-9} Gauss smoothed on the magnetic Jeans scale and below, can give rise to Thomson scattering optical depths \tau \ga 0.1, although not in the range of redshifts needed to explain the recent WMAP polarization observations. We also study the possibility that primordial fields could induce the formation of subgalactic structures for z \ga 15. We show that early structure formation induced by nano-Gauss magnetic fields is potentially capable of producing the early re-ionization implied by the WMAP data. Future CMB observations will be very useful to probe the modified ionization histories produced by primordial magnetic field evolution and constrain their strength.Comment: 19 pages, 7 figures, Minor changes to match version accepted in MNRA

    On the Clustering of GRBs on the Sky

    Get PDF
    The two-point correlation of the 4th (current) BATSE catalog (2494 objects) is calculated. It is shown to be consistent with zero at nearly all angular scales of interest. Assuming that GRBs trace the large scale structure in the universe we calculate the angular correlation function for the standard CDM (sCDM) model. It is shown to be 104\le 10^{-4} at θ5\theta \simeq 5^\circ if the BATSE catalog is assumed to be a volume-limited sample up to z1z \simeq 1. Combined with the error analysis on the BATSE catalog this suggests that nearly 10510^5 GRBs will be needed to make a positive detection of the two-point angular correlation function at this angular scale.Comment: 5 pages, Latex with aipproc.sty, incl. 1 ps-Fig., Proc. of the 5th Huntsville Gamma Ray Burst Symposium, Oct. 1999, ed. R.M. Kippen, AI

    Galactic dust polarized emission at high latitudes and CMB polarization

    Get PDF
    We estimate the dust polarized emission in our galaxy at high galactic latitudes, which is the dominant foreground for measuring CMB polarization using the high frequency instrument (HFI) aboard Planck surveyor. We compare it with the level of CMB polarization and conclude that, for angular scales 1\le 1^{\circ}, the scalar-induced CMB polarization and temperature-polarization cross-correlation are much larger than the foreground level at ν100GHz\nu \simeq 100 GHz. The tensor-induced signals seem to be at best comparable to the foreground level.}Comment: Latex document, 4 pages, 2 figures, to appear in "Fundamental parameters in Cosmology", Rencontres de Moriond, 199

    Hydrogen 2p--2s transition: signals from the epochs of recombination and reionization

    Get PDF
    We propose a method to study the epoch of reionization based on the possible observation of 2p--2s fine structure lines from the neutral hydrogen outside the cosmological H {\sc ii} regions enveloping QSOs and other ionizing sources in the reionization era. We show that for parameters typical of luminous sources observed at z6.3z \simeq 6.3 the strength of this signal, which is proportional to the H {\sc i} fraction, has a brightness temperature 20μK\simeq 20 \mu K for a fully neutral medium. The fine structure line from this redshift is observable at ν1GHz\nu \simeq 1 \rm GHz and we discuss prospects for the detection with several operational and future radio telescopes. We also compute the characteristics of this signal from the epoch of recombination: the peak brightness is expected to be 100μK\simeq 100 \mu K; this signal appears in the frequency range 5-10 MHz. The signal from the recombination era is nearly impossible to detect owing to the extreme brightness of the Galactic emission at these frequencies.Comment: 17 pages, 1 figure, to appear in Ap
    corecore