43 research outputs found

    Incremental Hierarchical Discriminant Regression

    Full text link

    Targeted Mutation of the Mouse Grp94 Gene Disrupts Development and Perturbs Endoplasmic Reticulum Stress Signaling

    Get PDF
    Glucose-regulated protein 94 (GRP94) is one of the most abundant endoplasmic reticulum (ER) resident proteins and is the ER counterpart of the cytoplasmic heat shock protein 90 (HSP90). GRP94, a component of the GRP78 chaperone system in protein processing, has pro-survival properties with implicated function in cancer progression and autoimmune disease. Previous studies on the loss of GRP94 function showed that it is required for embryonic development, regulation of toll-like receptors and innate immunity of macrophages. Here we report the creation of mouse models targeting exon 2 of the Grp94 allele that allows both traditional and conditional knockout (KO) of Grp94. In this study, we utilized the viable Grp94+/+ and +/βˆ’ mice, as well as primary mouse embryonic fibroblasts generated from them as experimental tools to study its role in ER chaperone balance and ER stress signaling. Our studies reveal that while Grp94 heterozygosity reduces GRP94 level it does not alter ER chaperone levels or the ER stress response. To study the effect of complete loss of GRP94 function, since homozygous GRP94 KO leads to embryonic lethality, we generated Grp94βˆ’/βˆ’ embryonic stem cells. In contrast to Grp94 heterozygosity, complete knockout of GRP94 leads to compensatory upregulation of the ER chaperones GRP78, calnexin and calreticulin but not protein disulphide isomerase. Unexpectedly, loss of GRP94 leads to significant decrease in the level of ER-stress induced spliced form of XBP-1 protein, a downstream target of the IRE1 signaling pathway. Furthermore, from analysis of microarray database and immunohistochemical staining, we present predictions where GRP94 may play an important role in specific adult organ homeostasis and function

    The Endoplasmic Reticulum Chaperone Protein GRP94 Is Required for Maintaining Hematopoietic Stem Cell Interactions with the Adult Bone Marrow Niche

    Get PDF
    Hematopoietic stem cell (HSC) homeostasis in the adult bone marrow (BM) is regulated by both intrinsic gene expression products and interactions with extrinsic factors in the HSC niche. GRP94, an endoplasmic reticulum chaperone, has been reported to be essential for the expression of specific integrins and to selectively regulate early T and B lymphopoiesis. In GRP94 deficient BM chimeras, multipotent hematopoietic progenitors persisted and even increased, however, the mechanism is not well understood. Here we employed a conditional knockout (KO) strategy to acutely eliminate GRP94 in the hematopoietic system. We observed an increase in HSCs and granulocyte-monocyte progenitors in the Grp94 KO BM, correlating with an increased number of colony forming units. Cell cycle analysis revealed that a loss of quiescence and an increase in proliferation led to an increase in Grp94 KO HSCs. This expansion of the HSC pool can be attributed to the impaired interaction of HSCs with the niche, evidenced by enhanced HSC mobilization and severely compromised homing and lodging ability of primitive hematopoietic cells. Transplanting wild-type (WT) hematopoietic cells into a GRP94 null microenvironment yielded a normal hematology profile and comparable numbers of HSCs as compared to WT control, suggesting that GRP94 in HSCs, but not niche cells, is required for maintaining HSC homeostasis. Investigating this, we further determined that there was a near complete loss of integrin Ξ±4 expression on the cell surface of Grp94 KO HSCs, which showed impaired binding with fibronectin, an extracellular matrix molecule known to play a role in mediating HSC-niche interactions. Furthermore, the Grp94 KO mice displayed altered myeloid and lymphoid differentiation. Collectively, our studies establish GRP94 as a novel cell intrinsic factor required to maintain the interaction of HSCs with their niche, and thus regulate their physiology

    Regulation of PERK Signaling and Leukemic Cell Survival by a Novel Cytosolic Isoform of the UPR Regulator GRP78/BiP

    Get PDF
    The unfolded protein response (UPR) is an evolutionarily conserved mechanism to allow cells to adapt to stress targeting the endoplasmic reticulum (ER). Induction of ER chaperone GRP78/BiP increases protein folding capacity; as such it represents a major survival arm of UPR. Considering the central importance of the UPR in regulating cell survival and death, evidence is emerging that cells evolve feedback regulatory pathways to modulate the key UPR executors, however, the precise mechanisms remain to be elucidated. Here, we report the fortuitous discovery of GRP78va, a novel isoform of GRP78 generated by alternative splicing (retention of intron 1) and alternative translation initiation. Bioinformatic and biochemical analyses revealed that expression of GRP78va is enhanced by ER stress and is notably elevated in human leukemic cells and leukemia patients. In contrast to the canonical GRP78 which is primarily an ER lumenal protein, GRP78va is devoid of the ER signaling peptide and is cytosolic. Through specific knockdown of endogenous GRP78va by siRNA without affecting canonical GRP78, we showed that GRP78va promotes cell survival under ER stress. We further demonstrated that GRP78va has the ability to regulate PERK signaling and that GRP78va is able to interact with and antagonize PERK inhibitor P58IPK. Our study describes the discovery of GRP78va, a novel cytosolic isoform of GRP78/BiP, and the first characterization of the modulation of UPR signaling via alternative splicing of nuclear pre-mRNA. Our study further reveals a novel survival mechanism in leukemic cells and other cell types where GRP78va is expressed

    Incremental Hierarchical Discriminant Regression

    No full text
    This paper presents Incremental Hierarchical Discriminant Regression (IHDR) which incrementally builds a decision tree or regression tree for very high dimensional regression or decision spaces by an online, real-time learning system. Biologically motivated, it is an approximate computational model for automatic development of associative cortex, with both bottom-up sensory inputs and top-down motor projections. At each internal node of the IHDR tree, information in the output space is used to automatically derive the local subspace spanned by the most discriminating features. Embedded in the tree is a hierarchical probability distribution model used to prune very unlikely cases during the search. The number of parameters in the coarse-to-fine approximation is dynamic and data-driven, enabling the IHDR tree to automatically fit data with unknown distribution shapes (thus, it is difficult to select the number of parameters up front). The IHDR tree dynamically assigns long-term memory to avoid the loss-of-memory problem typical with a global-fitting learning algorithm for neural networks. A major challenge for an incrementally built tree is that the number of samples varies arbitrarily during the construction process. An incrementally updated probability model, called sample size dependent negative-log-likelihood (SDNLL) metric is used to deal with large-sample size cases, small-sample size cases, and unbalanced-sample size cases, measured among different internal nodes of the IHDR tree. We report experimental results for four types of data: synthetic data to visualize the behavior of the algorithms, large face image data, continuous video stream from robot navigation, and publicly available data sets that use human defined features

    Online image classification using IHDR

    No full text

    Tumor-to-Tumor Metastasis: Lung Carcinoma Metastasizing to Thyroid Neoplasms

    No full text
    Tumor-to-tumor metastasis is extremely rare in the thyroid glands, and only seven cases of lung carcinoma metastasizing to thyroid tumors have been reported in the literature. We report another two cases of lung carcinoma metastasizing to thyroid neoplasms and review of the literature. The first case was a 64-year-old man presenting with neck mass, hoarseness, and easy choking for 2 months. Image studies showed several nodular lesions within bilateral thyroid glands. A histological examination after radical thyroidectomy revealed lung small cell carcinoma metastasizing to a thyroid follicular adenoma. The second case was a 71-year-old woman with a history of lung adenosquamous carcinoma. The PET/CT scan showed left lower lung cancer and a hypermetabolic area in the right thyroid lobe, highly suspicious for malignancy. Radical thyroidectomy and left lung lobectomy were performed, and the thyroid gland revealed lung adenosquamous carcinoma metastasizing to a papillary thyroid carcinoma
    corecore