8 research outputs found

    Membrane Association and Multimerization of TcpT, the Cognate ATPase Ortholog of the Vibrio cholerae Toxin-Coregulated-Pilus Biogenesis Apparatusâ–¿

    Get PDF
    The toxin-coregulated pilus (TCP) is one of the major virulence factors of Vibrio cholerae. Biogenesis of this type 4 pilus (Tfp) requires a number of structural components encoded by the tcp operon. TcpT, the cognate putative ATPase, is required for TCP biogenesis and all TCP-mediated functions. We studied the stability and localization of TcpT in cells containing in-frame deletions in each of the tcp genes. TcpT was detectable in each of the biogenesis mutants except the ΔtcpT strain. TcpT was localized to the inner membrane (IM) in a TcpR-dependent manner. TcpR is a predicted bitopic inner membrane protein of the TCP biogenesis apparatus. Using metal affinity pull-down experiments, we demonstrated interaction between TcpT and TcpR. Using Escherichia coli as a heterologous system, we investigated direct interaction between TcpR and TcpT. We report that TcpR is sufficient for TcpT IM localization per se; however, stable IM localization of TcpT requires an additional V. cholerae-specific factor(s). A LexA-based two-hybrid system was utilized to define interaction domains of the two proteins. We demonstrate a strong interaction between the cytoplasmic domain of TcpR and the N-terminal 100 amino acid residues of TcpT. We also demonstrated the ability of the C-terminal domain of TcpT to multimerize

    Development of pyrF-Based Genetic System for Targeted Gene Deletion in Clostridium thermocellum and Creation of a pta Mutant ▿ †

    Get PDF
    We report development of a genetic system for making targeted gene knockouts in Clostridium thermocellum, a thermophilic anaerobic bacterium that rapidly solubilizes cellulose. A toxic uracil analog, 5-fluoroorotic acid (5-FOA), was used to select for deletion of the pyrF gene. The ΔpyrF strain is a uracil auxotroph that could be restored to a prototroph via ectopic expression of pyrF from a plasmid, providing a positive genetic selection. Furthermore, 5-FOA was used to select against plasmid-expressed pyrF, creating a negative selection for plasmid loss. This technology was used to delete a gene involved in organic acid production, namely pta, which encodes the enzyme phosphotransacetylase. The C. thermocellum Δpta strain did not produce acetate. These results are the first examples of targeted homologous recombination and metabolic engineering in C. thermocellum, a microbe that holds an exciting and promising future in the biofuel industry and development of sustainable energy resources

    Deletion of the Cel48S cellulase from Clostridium thermocellum

    Get PDF
    Clostridium thermocellum is a thermophilic anaerobic bacterium that rapidly solubilizes cellulose with the aid of a multienzyme cellulosome complex. Creation of knockout mutants for Cel48S (also known as CelS, SS, and S8), the most abundant cellulosome subunit, was undertaken to gain insight into its role in enzymatic and microbial cellulose solubilization. Cultures of the Cel48S deletion mutant (S mutant) were able to completely solubilize 10 g/L crystalline cellulose. The cellulose hydrolysis rate of the S mutant strain was 60% lower than the parent strain, with the S mutant strain also exhibiting a 40% reduction in cell yield. The cellulosome produced by the S mutant strain was purified by affinity digestion, characterized enzymatically, and found to have a 35% lower specific activity on Avicel. The composition of the purified cellulosome was analyzed by tandem mass spectrometry with APEX quantification and no significant changes in abundance were observed in any of the major (>1% of cellulosomal protein) enzymatic subunits. Although most cellulolytic bacteria have one family 48 cellulase, C. thermocellum has two, Cel48S and Cel48Y. Cellulose solubilization by a Cel48S and Cel48Y double knockout was essentially the same as that of the Cel48S single knockout. Our results indicate that solubilization of crystalline cellulose by C. thermocellum can proceed to completion without expression of a family 48 cellulase

    High Ethanol Titers from Cellulose by Using Metabolically Engineered Thermophilic, Anaerobic Microbes ▿ † ‡

    Get PDF
    This work describes novel genetic tools for use in Clostridium thermocellum that allow creation of unmarked mutations while using a replicating plasmid. The strategy employed counter-selections developed from the native C. thermocellum hpt gene and the Thermoanaerobacterium saccharolyticum tdk gene and was used to delete the genes for both lactate dehydrogenase (Ldh) and phosphotransacetylase (Pta). The Δldh Δpta mutant was evolved for 2,000 h, resulting in a stable strain with 40:1 ethanol selectivity and a 4.2-fold increase in ethanol yield over the wild-type strain. Ethanol production from cellulose was investigated with an engineered coculture of organic acid-deficient engineered strains of both C. thermocellum and T. saccharolyticum. Fermentation of 92 g/liter Avicel by this coculture resulted in 38 g/liter ethanol, with acetic and lactic acids below detection limits, in 146 h. These results demonstrate that ethanol production by thermophilic, cellulolytic microbes is amenable to substantial improvement by metabolic engineering
    corecore