316 research outputs found
Reduction of the Vibrations Caused by Transport to the General Post-Office of Moscow
After the completion of base reinforcement with cast-in-place piles, instrumental analysis of foundation vibration parameters was made on the basis of the vibration survey results. The analysis showed a considerable decrease in the level of vibrations caused by transport
Two-photon Lithography for 3D Magnetic Nanostructure Fabrication
Ferromagnetic materials have been utilised as recording media within data
storage devices for many decades. Confinement of the material to a two
dimensional plane is a significant bottleneck in achieving ultra-high recording
densities and this has led to the proposition of three dimensional (3D)
racetrack memories that utilise domain wall propagation along nanowires.
However, the fabrication of 3D magnetic nanostructures of complex geometry is
highly challenging and not easily achievable with standard lithography
techniques. Here, by using a combination of two-photon lithography and
electrochemical deposition, we show a new approach to construct 3D magnetic
nanostructures of complex geometry. The magnetic properties are found to be
intimately related to the 3D geometry of the structure and magnetic imaging
experiments provide evidence of domain wall pinning at a 3D nanostructured
junction
A Defective mRNA Cleavage and Polyadenylation Complex Facilitates Expansions of Transcribed (GAA) n Repeats Associated with Friedreich’s Ataxia
Expansions of microsatellite repeats are responsible for numerous hereditary diseases in humans, including myotonic dystrophy and Friedreich's ataxia. Whereas the length of an expandable repeat is the main factor determining disease inheritance, recent data point to genomic trans modifiers that can impact the likelihood of expansions and disease progression. Detection of these modifiers may lead to understanding and treating repeat expansion diseases. Here, we describe a method for the rapid, genome-wide identification of trans modifiers for repeat expansion in a yeast experimental system. Using this method, we found that missense mutations in the endoribonuclease subunit (Ysh1) of the mRNA cleavage and polyadenylation complex dramatically increase the rate of (GAA) n repeat expansions but only when they are actively transcribed. These expansions correlate with slower transcription elongation caused by the ysh1 mutation. These results reveal an interplay between RNA processing and repeat-mediated genome instability, confirming the validity of our approach. Keywords: genome instability; repeat expansion; RNA polyadenylation; RNA processing; transcription-replication conflicts;
Friedreich’s ataxia; DNA double-strand breaks; trans-modifiers of repeat expansions; genetic screen; whole-genome sequencin
The Dirac system on the Anti-de Sitter Universe
We investigate the global solutions of the Dirac equation on the
Anti-de-Sitter Universe. Since this space is not globally hyperbolic, the
Cauchy problem is not, {\it a priori}, well-posed. Nevertheless we can prove
that there exists unitary dynamics, but its uniqueness crucially depends on the
ratio beween the mass of the field and the cosmological constant
: it appears a critical value, , which plays a role
similar to the Breitenlohner-Freedman bound for the scalar fields. When
there exists a unique unitary dynamics. In opposite, for
the light fermions satisfying , we construct several asymptotic
conditions at infinity, such that the problem becomes well-posed. In all the
cases, the spectrum of the hamiltonian is discrete. We also prove a result of
equipartition of the energy.Comment: 33 page
Quasiparticle interfacial level alignment of highly hybridized frontier levels: HO on TiO(110)
Knowledge of the frontier levels' alignment prior to photo-irradiation is
necessary to achieve a complete quantitative description of HO
photocatalysis on TiO(110). Although HO on rutile TiO(110) has been
thoroughly studied both experimentally and theoretically, a quantitative value
for the energy of the highest HO occupied levels is still lacking. For
experiment, this is due to the HO levels being obscured by hybridization
with TiO(110) levels in the difference spectra obtained via ultraviolet
photoemission spectroscopy (UPS). For theory, this is due to inherent
difficulties in properly describing many-body effects at the
HO-TiO(110) interface. Using the projected density of states (DOS) from
state-of-the-art quasiparticle (QP) , we disentangle the adsorbate and
surface contributions to the complex UPS spectra of HO on TiO(110). We
perform this separation as a function of HO coverage and dissociation on
stoichiometric and reduced surfaces. Due to hybridization with the TiO(110)
surface, the HO 3a and 1b levels are broadened into several peaks
between 5 and 1 eV below the TiO(110) valence band maximum (VBM). These
peaks have both intermolecular and interfacial bonding and antibonding
character. We find the highest occupied levels of HO adsorbed intact and
dissociated on stoichiometric TiO(110) are 1.1 and 0.9 eV below the VBM. We
also find a similar energy of 1.1 eV for the highest occupied levels of HO
when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In
both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than
those estimated from UPS difference spectra, which are inconclusive in this
energy region. Finally, we apply self-consistent QP (scQP1) to obtain
the ionization potential of the HO-TiO(110) interface.Comment: 12 pages, 12 figures, 1 tabl
Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP)
As RNA-binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNA molecules, binding site identification by UV crosslinking and immunoprecipitation (CLIP) of ribonucleoprotein complexes is critical to understanding RBP function. However, current CLIP protocols are technically demanding and yield low-complexity libraries with high experimental failure rates. We have developed an enhanced CLIP (eCLIP) protocol that decreases requisite amplification by ~1,000-fold, decreasing discarded PCR duplicate reads by ~60% while maintaining single-nucleotide binding resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP improves specificity in the discovery of authentic binding sites. We generated 102 eCLIP experiments for 73 diverse RBPs in HepG2 and K562 cells (available at https://www.encodeproject.org), demonstrating that eCLIP enables large-scale and robust profiling, with amplification and sample requirements similar to those of ChIP-seq. eCLIP enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP and RNA-centric perspectives on RBP activity
First Measurement of the Transverse Spin Asymmetries of the Deuteron in Semi-Inclusive Deep Inelastic Scattering
First measurements of the Collins and Sivers asymmetries of charged hadrons
produced in deep-inelastic scattering of muons on a transversely polarized
6-LiD target are presented. The data were taken in 2002 with the COMPASS
spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins
asymmetry turns out to be compatible with zero, as does the measured Sivers
asymmetry within the present statistical errors.Comment: 6 pages, 2 figure
Spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron at low values of x and Q^2
We present a precise measurement of the deuteron longitudinal spin asymmetry
A_1^d and of the deuteron spin-dependent structure function g_1^d at Q^2 < 1
GeV^2 and 4*10^-5 < x < 2.5*10^-2 based on the data collected by the COMPASS
experiment at CERN during the years 2002 and 2003. The statistical precision is
tenfold better than that of the previous measurement in this region. The
measured A_1^d and g_1^d are found to be consistent with zero in the whole
range of x.Comment: 17 pages, 10 figure
Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs
We present a determination of the gluon polarization Delta G/G in the
nucleon, based on the helicity asymmetry of quasi-real photoproduction events,
Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final
state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV
polarized muon beam scattered on a polarized 6-LiD target. The helicity
asymmetry for the selected events is = 0.002 +- 0.019(stat.) +-
0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta
G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3
(GeV}/c)^2.Comment: 10 pages, 3 figure
- …