62 research outputs found

    Model Averaging by Cross-validation for Partially Linear Functional Additive Models

    Full text link
    In this paper, we propose a model averaging approach for addressing model uncertainty in the context of partial linear functional additive models. These models are designed to describe the relation between a response and mixed-types of predictors by incorporating both the parametric effect of scalar variables and the additive effect of a functional variable. The proposed model averaging scheme assigns weights to candidate models based on the minimization of a multi-fold cross-validation criterion. Furthermore, we establish the asymptotic optimality of the resulting estimator in terms of achieving the lowest possible square prediction error loss under model misspecification. Extensive simulation studies and an application to a near infrared spectra dataset are presented to support and illustrate our method

    Acoustic diagnostics of femtosecond laser filamentation

    Full text link
    The promising application of femtosecond laser filamentation in atmospheric remote sensing brings imperative demand for diagnosing the spatiotemporal dynamics of filamentation. Acoustic emission (AE) during filamentation opens a door to give the insight into the dynamic evolution of filaments in air. In particular, the frequency features of the acoustic emission provide relevant information on the conversion of laser energy to acoustic energy. Here, the acoustic emission of femtosecond laser filament manipulated by energy and the focal lengths was measured quantitatively by a broadband microphone, and the acoustic parameters were compared and analyzed. Our results showed that the acoustic power presents a squared dependence on the laser energy and the bandwidth of the acoustic spectrum showed a significant positive correlation with laser energy deposition. It was found that the spectrum of the acoustic pulse emitted from the middle of the filament has a larger bandwidth compared to those emitted from the ends of the filament and the spectrum of the acoustic pulse is also an indicator of the filament intensity distribution. These findings are helpful for studying the plasma filament properties and complex dynamic processes through acoustic parameters and allow the optimization of remote applications.Comment: 8 pages,5 figure

    The impact of statin use before intensive care unit admission on patients with acute kidney injury after cardiac surgery

    Get PDF
    Background: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common and serious complication after cardiac surgery. The influence of statin use before surgery on the renal outcome of patients undergoing cardiac surgery is controversial. The purpose of this study was to evaluate the effect of statins on postoperative renal outcomes in patients undergoing cardiac surgery.Methods: We included CSA-AKI patients in the Medical Information Mart for Intensive Care (MIMIC)—IV database and were divided into statin group and non-statin group according to whether they used statins before entering intensive care units (ICU). The main outcomes were hospitalization and 30-day mortality, and the secondary outcomes were 60-day mortality and 90-day mortality. We used propensity score matching (PSM) to adjust for confounding factors. The 95% confidence interval (CI) and risk ratio (RO) were calculated by the COX proportional regression model. At the same time, stratified analysis was used to explore whether the relationship between the statins use before intensive care units and mortality was different in each subgroup and whether the relationship between different doses of Atorvastatin and mortality was different.Result: We identified 675 pre-ICU statin users and 2095 non-statin users. In the COX proportional regression model, pre-ICU statin use was associated with decreased in-hospital (HR = 0.407, 95%confidence interval 0.278–0.595, p < 0.001) and 30-day mortality (HR = 0.407, 95%CI 0.279–0.595, p < 0.001). The survival rate of patients who took statins before entering ICU was significantly higher than that of those who did not use statins at 30 days, 60 days and 90 days. There is a significant interaction between patients with aged>65 years (HR = 0.373, 95%CI 0.240–0.581, p < 0.001), Acute kidney injury grade I (HR = 0.244, 95%CI 0.118–0.428, p < 0.001), and without post-myocardial infarction syndrome (HR = 0.344, 95%CI 0.218–0.542, p < 0.001). The mortality in hospital and 60 days of CSA-AKI patients treated with ≥80 mg Atorvastatin before operation was significantly reduced (p < 0.05).Conclusion: The pre-ICU statin use was significantly associated with decreased risk in hospital and 30-day mortality. The preoperative use of ≥80 mg Atorvastatin may improve the prognosis of CSA-AKI

    Femtosecond Laser Filamentation in Atmospheric Turbulence

    Full text link
    The effects of turbulence intensity and turbulence region on the distribution of femtosecond laser filaments are experimentally elaborated. Through the ultrasonic signals emitted by the filaments, and it is observed that increasing turbulence intensity and expanding turbulence active region cause an increase in the start position of the filament, and a decrease in filament length, which can be well explained by the theoretical calculation. It is also observed that the random perturbation of the air refractive index caused by atmospheric turbulence expanded the spot size of the filament. Additionally, when turbulence intensity reaches , multiple filaments are formed. Furthermore, the standard deviation of the transverse displacement of filament is found to be proportional to the square root of turbulent structure constant under the experimental turbulence parameters in this paper. These results contribute to the study of femtosecond laser propagation mechanisms in complex atmospheric turbulence conditionsComment: 9 pages, 4 figure

    Coupled air lasing gain and Mie scattering loss: aerosol effect in filament-induced plasma spectroscopy

    Full text link
    Femtosecond laser filament-induced plasma spectroscopy (FIPS) demonstrates great potentials in the remote sensing for identifying atmospheric pollutant molecules. Due to the widespread aerosols in atmosphere, the remote detection based on FIPS would be affected from both the excitation and the propagation of fingerprint fluorescence, which still remain elusive. Here the physical model of filament-induced aerosol fluorescence is established to reveal the combined effect of Mie scattering and amplification spontaneous emission, which is then proved by the experimental results, the dependence of the backward fluorescence on the interaction length between filament and aerosols. These findings provide an insight into the complicated aerosol effect in the overall physical process of FIPS including propagation, excitation and emission, paving the way to its practical application in atmospheric remote sensing.Comment: 7 pages, 4 figure

    Remote Estimation of Leaf and Canopy Water Content in Winter Wheat with Different Vertical Distribution of Water-Related Properties

    No full text
    This study analyzed the vertical distribution of gravimetric water content (GWC), relative water content (RWC), and equivalent water thickness (EWT) in winter wheat during heading and early ripening stages, and evaluated the position of leaf number at which Vegetation Indexes (VIs) can best retrieve canopy water-related properties of winter wheat. Results demonstrated that the vertical distribution of these properties followed a near-bell-shaped curve with the highest values at the intermediate leaf position. GWC of the top three or four leaves during the heading stage and the top two or three leaves during the early ripening stage can represent the GWC of the whole canopy, but the RWC and EWT of the whole canopy should be calculated based on the top four leaves. At leaf level, the analysis demonstrated strong relationships between EWT and VIs for the top leaf layer, but for GWCD, GWCF, and RWC, the strongest relationships with VIs were found in the intermediate leaf layers. At canopy level, VIs provided the most accurate estimation of GWCfor the top three or four leaves. Water absorption-based VIs could estimate canopy EWT of winter wheat for the top four leaves, but the suitable bands sensitive to water absorptions should be carefully selected for the studied species
    • …
    corecore