3 research outputs found
Π Π΅Π΄ΠΎΠΊΡ-ΡΠ΅Π°ΠΊΡΠΈΠΈ Ρ Hydrocharis morsus-ranae L. Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΡΠ΅Ρ Π½ΠΎΠ³Π΅Π½Π½ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠΈ
Aquatic ecosystems are very sensitive to industrial impacts, and, therefore, it is increasingly important to study the mechanisms underlying the tolerance of aquatic organisms to water pollution. Heavy metals (HMs) are among the most common and toxic pollutants of aquatic ecosystems. They have a particularly strong effect on macrophytes, which are in close contact with the aquatic environment and can accumulate metals in considerable quantities. Hydrocharis morsus-ranae L. is a floating macrophyte (pleistophyte) with a high capacity for accumulation of HMs. The aim of the present study was to assess the effect of industrial pollution on the redox reactions in H. morsus-ranae and to identify the role of low molecular weight antioxidants in adaptation of this macrophyte to unfavorable conditions. A comparative analysis of the physiological and biochemical characteristics of H. morsus-ranae from two (reference and impacted) water bodies was carried out. The study revealed an increased level of lipid peroxidation products in the leaves of H. morsus-ranae under industrial impact, which indicates oxidative stress. Nevertheless, this floating plant demonstrated fairly high resistance to adverse conditions, due to the synthesis of non-enzymatic antioxidants such as proline and soluble protein thiols. Revealing the response of macrophytes to pollution of water bodies will help predict the state of aquatic ecosystems with an increase in anthropogenic pressureΠΠΎΠ΄Π½ΡΠ΅ ΡΠΊΠΎΡΠΈΡΡΠ΅ΠΌΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ ΠΊ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΠΌ
Π½Π°Π³ΡΡΠ·ΠΊΠ°ΠΌ, ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ΅ Π±ΠΎΠ»Π΅Π΅ Π°ΠΊΡΡΠ°Π»ΡΠ½ΡΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ
Π³ΠΈΠ΄ΡΠΎΠ±ΠΈΠΎΠ½ΡΠΎΠ² ΠΊ Π·Π°Π³ΡΡΠ·Π½Π΅Π½ΠΈΡ Π²ΠΎΠ΄Π½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ². Π’ΡΠΆΠ΅Π»ΡΠ΅ ΠΌΠ΅ΡΠ°Π»Π»Ρ (Π’Π) ΠΎΡΠ½ΠΎΡΡΡΡΡ ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅
ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΌ ΠΈ ΡΠΎΠΊΡΠΈΡΠ½ΡΠΌ ΠΏΠΎΠ»Π»ΡΡΠ°Π½ΡΠ°ΠΌ Π³ΠΈΠ΄ΡΠΎΡΠΊΠΎΡΠΈΡΡΠ΅ΠΌ. ΠΡΠΎΠ±Π΅Π½Π½ΠΎ ΡΠΈΠ»ΡΠ½ΠΎΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΎΠ½ΠΈ
ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° ΠΌΠ°ΠΊΡΠΎΡΠΈΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΈΡΡΡΡ Ρ Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ΅Π΄ΠΎΠΉ ΠΈ ΠΌΠΎΠ³ΡΡ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡΡ ΠΌΠ΅ΡΠ°Π»Π»Ρ
Π² Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π°Ρ
. Hydrocharis morsus-ranae
L. ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΠΏΠ»Π°Π²Π°ΡΡΠΈΠΌ ΠΌΠ°ΠΊΡΠΎΡΠΈΡΠ°ΠΌ
(ΠΏΠ»Π΅ΠΉΡΡΠΎΡΠΈΡΠ°ΠΌ), ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠΌ Π²ΡΡΠΎΠΊΠΎΠΉ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΈΠ²Π½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡΡ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π’Π. Π¦Π΅Π»Ρ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΠΎΡΠ΅Π½ΠΊΠ° Π²Π»ΠΈΡΠ½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ Π·Π°Π³ΡΡΠ·Π½Π΅Π½ΠΈΡ Π½Π° ΡΠ΅Π΄ΠΎΠΊΡ-ΡΠ΅Π°ΠΊΡΠΈΠΈ
Ρ H. morsus-ranae,
Π° ΡΠ°ΠΊΠΆΠ΅ Π²ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠ»ΠΈ Π½ΠΈΠ·ΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΠΎΠ² Π² Π΅Π³ΠΎ Π°Π΄Π°ΠΏΡΠ°ΡΠΈΠΈ ΠΊ Π½Π΅Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΡΠΌ
ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΎ-Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ H. morsus-ranae
ΠΈΠ· Π΄Π²ΡΡ
Π²ΠΎΠ΄Π½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² (ΡΠΎΠ½ ΠΈ ΠΈΠΌΠΏΠ°ΠΊΡ). ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠ»ΠΎ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΠΉ ΡΡΠΎΠ²Π΅Π½Ρ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² ΠΏΠ΅ΡΠ΅ΠΊΠΈΡΠ½ΠΎΠ³ΠΎ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² Π² Π»ΠΈΡΡΡΡΡ
H. morsus-ranae
Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΡΡΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ± ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΡΡΠ΅ΡΡΠ΅. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΡΡΠΎΡ
ΠΌΠ°ΠΊΡΠΎΡΠΈΡ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π» Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π²ΡΡΠΎΠΊΡΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ ΠΊ Π½Π΅Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ,
ΡΡΠΎ ΡΡΠ°Π»ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΌ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΠΈΠ½ΡΠ΅Π·Ρ ΡΠ°ΠΊΠΈΡ
Π½Π΅ΡΠ½Π·ΠΈΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΠΎΠ², ΠΊΠ°ΠΊ ΠΏΡΠΎΠ»ΠΈΠ½
ΠΈ ΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΠ΅ Π±Π΅Π»ΠΊΠΎΠ²ΡΠ΅ ΡΠΈΠΎΠ»Ρ. ΠΡΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠ²Π΅ΡΠ½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΉ ΠΌΠ°ΠΊΡΠΎΡΠΈΡΠΎΠ² Π½Π° Π·Π°Π³ΡΡΠ·Π½Π΅Π½ΠΈΠ΅
Π²ΠΎΠ΄Π½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π±ΡΠ΄Π΅Ρ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°ΡΡ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π³ΠΈΠ΄ΡΠΎΡΠ΅Π½ΠΎΠ·ΠΎΠ² ΠΏΡΠΈ ΡΡΠΈΠ»Π΅Π½ΠΈΠΈ
Π°Π½ΡΡΠΎΠΏΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΡΡΠΈΠ½Π³
Alternative splicing in multiple sclerosis and other autoimmune diseases
Alternative splicing is a general mechanism for regulating gene expression that affects the RNA products of more than 90% of human genes. Not surprisingly, alternative splicing is observed among gene products of metazoan immune systems, which have evolved to efficiently recognize pathogens and discriminate between βselfβ and βnon-selfβ, and thus need to be both diverse and flexible. In this review we focus on the specific interface between alternative splicing and autoimmune diseases, which result from a malfunctioning of the immune system and are characterized by the inappropriate reaction to self-antigens. Despite the widespread recognition of alternative splicing as one of the major regulators of gene expression, the connections between alternative splicing and autoimmunity have not been apparent. We summarize recent findings connecting splicing and autoimmune disease, and attempt to find common patterns of splicing regulation that may advance our understanding of autoimmune diseases and open new avenues for therapy