320 research outputs found
Braneworld Cosmological Perturbation Theory at Low Energy
Homogeneous cosmology in the braneworld can be studied without solving bulk
equations of motion explicitly. The reason is simply because the symmetry of
the spacetime restricts possible corrections in the 4-dimensional effective
equations of motion. It would be great if we could analyze cosmological
perturbations without solving the bulk. For this purpose, we combine the
geometrical approach and the low energy gradient expansion method to derive the
4-dimensional effective action. Given our effective action, the standard
procedure to obtain the cosmological perturbation theory can be utilized and
the temperature anisotropy of the cosmic background radiation can be computed
without solving the bulk equations of motion explicitly.Comment: 10 pages, Based on a talk presented at ACRGR4, the 4th Australasian
Conference on General Relativity and Gravitation, Monash University,
Melbourne, January 2004. To appear in the proceedings, in General Relativity
and Gravitatio
Spacetime dynamics and baryogenesis in braneworld
We point out that the effective theory for the Randall-Sundrum braneworld
models with bulk fields contains the baryon number violation process depending
on the spacetime dynamics. Combining to the curvature-current interaction, the
net baryon number observed today may be explained. The resultant baryon to
entropy ratio is determined by the ratio of the Planck scales in four
dimensional and five dimensional spacetime except for the parameter for CP
violation.Comment: 8 pages, references adde
Angular momentum at null infinity in higher dimensions
We define the angular momentum at null infinity in higher dimensions. The
asymptotic symmetry at null infinity becomes the Poincare group in higher
dimensions. This fact implies that the angular momentum can be defined without
any ambiguities such as supertranslation in four dimensions. Indeed we can show
that the angular momentum in our definition is transformed covariantly with
respect to the Poincare group.Comment: 13 page
Semiclassical instability of the brane-world: Randall-Sundrum bubbles
We discuss the semiclassical instability of the Randall-Sundrum brane-world
model against a creation of a kind of Kaluza-Klein bubble. An example
describing such a bubble space-time is constructed from the five-dimensional
AdS-Schwarzschild metric. The induced geometry of the brane looks like the
Einstein-Rosen bridge, which connects the positive and the negative tension
branes. The bubble rapidly expands and there also form a trapped region around
it.Comment: 4 pages, 3 figures, two references adde
Proposal for an experiment to search for Randall-Sundrum type corrections to Newton's law of gravitation
String theory, as well as the string inspired brane-world models such as the
Randall-Sundrum (RS) one, suggest a modification of Newton's law of gravitation
at small distance scales. Search for modifications of standard gravity is an
active field of research in this context. It is well known that short range
corrections to gravity would violate the Newton-Birkhoff theorem. Based on
calculations of RS type non-Newtonian forces for finite size spherical bodies,
we propose a torsion balance based experiment to search for the effects of
violation of this celebrated theorem valid in Newtonian gravity as well as the
general theory of relativity. We explain the main principle behind the
experiment and provide detailed calculations suggesting optimum values of the
parameters of the experiment. The projected sensitivity is sufficient to probe
the Randall-Sundrum parameter up to 10 microns.Comment: 4 pages and 5 figures, figures improved, minor clarifications and few
references added, final version to appear in PRD (rapid communications
Cosmology and two-body problem of D-branes
In this paper, we investigate the dynamics and the evolution of the scale
factor of a probe Dp-brane which move in the background of source Dp-branes.
Action of the probe brane is described by the Born-Infeld action and the
interaction with the background R-R field. When the probe brane moves away from
the source branes, it expands by power law, whose index depends on the
dimension of the brane. If the energy density of the gauge field on the brane
is subdominant, the expansion is decelerating irrespective of the dimension of
the brane. On the other hand, when the probe brane is a Nambu-Goto brane, the
energy density of the gauge field can be dominant, in which case accelerating
expansion occurs for . The accelerating expansion stops when the
brane has expanded sufficiently so that the energy density of the gauge field
become subdominant.Comment: 6 pages, 7 figures, reference added, accepted for publication in PR
D-braneworld cosmology
We discuss D-braneworld cosmology, that is, the brane is described by the
Born-Infeld action. Compared with the usual Randall-Sundrum braneworld
cosmology where the brane action is the Nambu-Goto one, we can see some drastic
changes at the very early universe: (i)universe may experience the rapid
accelerating phase (ii)the closed universe may avoid the initial singularity.
We also briefly address the dynamics of the cosmology in the open string
metric, which might be favorer than the induced metric from the view point of
the D-brane.Comment: 6 pages, 3 figures, minor corrections, accepted for publication in
Phys. Rev.
Equivalence Between Space-Time-Matter and Brane-World Theories
We study the relationship between space-time-matter (STM) and brane theories.
These two theories look very different at first sight, and have different
motivation for the introduction of a large extra dimension. However, we show
that they are equivalent to each other. First we demonstrate that STM predicts
local and non-local high-energy corrections to general relativity in 4D, which
are identical to those predicted by brane-world models. Secondly, we notice
that in brane models the usual matter in 4D is a consequence of the dependence
of five-dimensional metrics on the extra coordinate. If the 5D bulk metric is
independent of the extra dimension, then the brane is void of matter. Thus, in
brane theory matter and geometry are unified, which is exactly the paradigm
proposed in STM. Consequently, these two 5D theories share the same concepts
and predict the same physics. This is important not only from a theoretical
point of view, but also in practice. We propose to use a combination of both
methods to alleviate the difficult task of finding solutions on the brane. We
show an explicit example that illustrate the feasibility of our proposal.Comment: Typos corrected, three references added. To appear in Mod. Phys. Let
Self-similar cosmologies in 5D: spatially flat anisotropic models
In the context of theories of Kaluza-Klein type, with a large extra
dimension, we study self-similar cosmological models in 5D that are
homogeneous, anisotropic and spatially flat. The "ladder" to go between the
physics in 5D and 4D is provided by Campbell-Maagard's embedding theorems. We
show that the 5-dimensional field equations determine the form of
the similarity variable. There are three different possibilities: homothetic,
conformal and "wave-like" solutions in 5D. We derive the most general
homothetic and conformal solutions to the 5D field equations. They require the
extra dimension to be spacelike, and are given in terms of one arbitrary
function of the similarity variable and three parameters. The Riemann tensor in
5D is not zero, except in the isotropic limit, which corresponds to the case
where the parameters are equal to each other. The solutions can be used as 5D
embeddings for a great variety of 4D homogeneous cosmological models, with and
without matter, including the Kasner universe. Since the extra dimension is
spacelike, the 5D solutions are invariant under the exchange of spatial
coordinates. Therefore they also embed a family of spatially {\it
inhomogeneous} models in 4D. We show that these models can be interpreted as
vacuum solutions in braneworld theory. Our work (I) generalizes the 5D
embeddings used for the FLRW models; (II) shows that anisotropic cosmologies
are, in general, curved in 5D, in contrast with FLRW models which can always be
embedded in a 5D Riemann-flat (Minkowski) manifold; (III) reveals that
anisotropic cosmologies can be curved and devoid of matter, both in 5D and 4D,
even when the metric in 5D explicitly depends on the extra coordinate, which is
quite different from the isotropic case.Comment: Typos corrected. Minor editorial changes and additions in the
Introduction and Summary section
Brane-World and Holography
We consider the brane-world in the holographic point of view. Bearing the
realistic models in mind, the bulk massless scalar field is introduced. First
of all, we find the constraint on the coupling of the scalar fields with the
matter(not holographic CFT) on the brane. We show that the traceless part of
the energy-momentum tensor of holographic CFT is a part of the bulk Weyl
tensor. The trace part which comes from the trace-anomaly is corresponding to
the -term appeared in the generalized FRW equation in the brane-world.Comment: 4 pages, minor change
- âŠ