354 research outputs found

    Algebraic Bethe ansatz for the one-dimensional Hubbard model with open boundaries

    Full text link
    The one-dimensional Hubbard model with open boundary conditions is exactly solved by means of algebraic Bethe ansatz. The eigenvalue of the transfer matrix, the energy spectrum as well as the Bethe ansatz equations are obtained.Comment: Only LaTex file; no figur

    SO(4) Symmetry of the Transfer Matrix for the One-Dimensional Hubbard Model

    Full text link
    The SO(4) invariance of the transfer matrix for the one-dimensional Hubbard model is clarified from the QISM (quantum inverse scattering method) point of view. We demonstrate the SO(4) symmetry by means of the fermionic R-matrix, which satisfy the graded Yang-Baxter relation. The transformation law of the fermionic L-operator under the SO(4) rotation is identified with a kind of gauge transformation, which determines the corresponding transformation of the fermionic creation and annihilation operators under the SO(4) rotation. The transfer matrix is confirmed to be invariant under the SO(4) rotation, which ensures the SO(4) invariance of the conserved currents including the Hamiltonian. Furthermore, we show that the representation of the higher conserved currents in terms of the Clifford algebra gives manifestly SO(4) invariant forms.Comment: 20 pages, LaTeX file using citesort.st

    Fermionic R-Operator and Integrability of the One-Dimensional Hubbard Model

    Full text link
    We propose a new type of the Yang-Baxter equation (YBE) and the decorated Yang-Baxter equation (DYBE). Those relations for the fermionic R-operator were introduced recently as a tool to treat the integrability of the fermion models. Using the YBE and the DYBE for the XX fermion model, we construct the fermionic R-operator for the one-dimensional (1D) Hubbard model. It gives another proof of the integrability of the 1D Hubbard model. Furthermore a new approach to the SO(4) symmetry of the 1D Hubbard model is discussed.Comment: 25 page

    Asymptotic Behavior of the Emptiness Formation Probability in the Critical Phase of XXZ Spin Chain

    Full text link
    We study the Emptiness Formation Probability (EFP) for the spin 1/2 XXZ spin chain. EFP P(n) detects a formation of ferromagnetic string of the length n in the ground state. It is expected that EFP decays in a Gaussian way for large strings P(n) ~ n^{-gamma} C^{-n^2}. Here, we propose the explicit expressions for the rate of Gaussian decay C as well as for the exponent gamma. In order to confirm the validity of our formulas, we employed an ab initio simulation technique of the density-matrix renormalization group to simulate XXZ spin chain of sufficient length. Furthermore, we performed Monte-Carlo integration of the Jimbo-Miwa multiple integral for P(n). Those numerical results for P(n) support our formulas fairly definitely.Comment: 9 pages, 2 figure

    Lax pair for SU(n) Hubbard model

    Full text link
    For one dimensional SU(n) Hubbard model, a pair of Lax operators are derived, which give a set of fundamental equations for the quantum inverse scattering method under both periodic and open boundary conditions. This provides another proof of the integrability of the model under periodic boundary condition.Comment: Latex file, 7 pages, little change adde

    Fermionic R-Operator and Algebraic Structure of 1D Hubbard Model: Its application to quantum transfer matrix

    Full text link
    The algebraic structure of the 1D Hubbard model is studied by means of the fermionic R-operator approach. This approach treats the fermion models directly in the framework of the quantum inverse scattering method. Compared with the graded approach, this approach has several advantages. First, the global properties of the Hamiltonian are naturally reflected in the algebraic properties of the fermionic R-operator. We want to note that this operator is a local operator acting on fermion Fock spaces. In particular, SO(4) symmetry and the invariance under the partial particle hole transformation are discussed. Second, we can construct a genuinely fermionic quantum transfer transfer matrix (QTM) in terms of the fermionic R-operator. Using the algebraic Bethe Ansatz for the Hubbard model, we diagonalize the fermionic QTM and discuss its properties.Comment: 22 pages, no figure

    Correlation length of the 1D Hubbard Model at half-filling : equal-time one-particle Green's function

    Full text link
    The asymptotics of the equal-time one-particle Green's function for the half-filled one-dimensional Hubbard model is studied at finite temperature. We calculate its correlation length by evaluating the largest and the second largest eigenvalues of the Quantum Transfer Matrix (QTM). In order to allow for the genuinely fermionic nature of the one-particle Green's function, we employ the fermionic formulation of the QTM based on the fermionic R-operator of the Hubbard model. The purely imaginary value of the second largest eigenvalue reflects the k_F (= pi/2) oscillations of the one-particle Green's function at half-filling. By solving numerically the Bethe Ansatz equations with Trotter numbers up to N=10240, we obtain accurate data for the correlation length at finite temperatures down into the very low temperature region. The correlation length remains finite even at T=0 due to the existence of the charge gap. Our numerical data confirm Stafford and Millis' conjecture regarding an analytic expression for the correlation length at T=0.Comment: 7 pages, 6 figure

    Integrable variant of the one-dimensional Hubbard model

    Get PDF
    A new integrable model which is a variant of the one-dimensional Hubbard model is proposed. The integrability of the model is verified by presenting the associated quantum R-matrix which satisfies the Yang-Baxter equation. We argue that the new model possesses the SO(4) algebra symmetry, which contains a representation of the η\eta-pairing SU(2) algebra and a spin SU(2) algebra. Additionally, the algebraic Bethe ansatz is studied by means of the quantum inverse scattering method. The spectrum of the Hamiltonian, eigenvectors, as well as the Bethe ansatz equations, are discussed
    corecore