124 research outputs found

    Dynamic Fano Resonance of Quasienergy Excitons in Superlattices

    Full text link
    The dynamic Fano resonance (DFR) between discrete quasienergy excitons and sidebands of their ionization continua is predicted and investigated in dc- and ac-driven semiconductor superlattices. This DFR, well controlled by the ac field, delocalizes the excitons and opens an intrinsic decay channel in nonlinear four-wave mixing signals.Comment: 4pages, 4figure

    Model-based analysis of two-color arrays (MA2C)

    Get PDF
    A normalization method based on probe GC content for two-color tiling arrays and an algorithm for detecting peak regions are presented. They are available in a stand-alone Java program

    LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes

    Get PDF
    Legumes play a vital role in maintaining the nitrogen cycle of the biosphere. They conduct symbiotic nitrogen fixation through endosymbiotic relationships with bacteria in root nodules. However, this and other characteristics of legumes, including mycorrhization, compound leaf development and profuse secondary metabolism, are absent in the typical model plant Arabidopsis thaliana. We present LegumeIP (http://plantgrn.noble.org/LegumeIP/), an integrative database for comparative genomics and transcriptomics of model legumes, for studying gene function and genome evolution in legumes. LegumeIP compiles gene and gene family information, syntenic and phylogenetic context and tissue-specific transcriptomic profiles. The database holds the genomic sequences of three model legumes, Medicago truncatula, Glycine max and Lotus japonicus plus two reference plant species, A. thaliana and Populus trichocarpa, with annotations based on UniProt, InterProScan, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases. LegumeIP also contains large-scale microarray and RNA-Seq-based gene expression data. Our new database is capable of systematic synteny analysis across M. truncatula, G. max, L. japonicas and A. thaliana, as well as construction and phylogenetic analysis of gene families across the five hosted species. Finally, LegumeIP provides comprehensive search and visualization tools that enable flexible queries based on gene annotation, gene family, synteny and relative gene expression

    Second harmonic generation and birefringence of some ternary pnictide semiconductors

    Full text link
    A first-principles study of the birefringence and the frequency dependent second harmonic generation (SHG) coefficients of the ternary pnictide semiconductors with formula ABC2_2 (A = Zn, Cd; B = Si, Ge; C = As, P) with the chalcopyrite structures was carried out. We show that a simple empirical observation that a smaller value of the gap is correlated with larger value of SHG is qualitatively true. However, simple inverse power scaling laws between gaps and SHG were not found. Instead, the real value of the nonlinear response is a result of a very delicate balance between different intraband and interband terms.Comment: 13 pages, 12 figure

    Molecular portraits of human breast tumours

    Get PDF
    Human breast tumours are diverse in their natural history and in their responsiveness to treatments1. Variation in transcriptional programs accounts for much of the biological diversity of human cells and tumours. In each cell, signal transduction and regulatory systems transduce information from the cell's identity to its environmental status, thereby controlling the level of expression of every gene in the genome. Here we have characterized variation in gene expression patterns in a set of 65 surgical specimens of human breast tumours from 42 different individuals, using complementary DNA microarrays representing 8,102 human genes. These patterns provided a distinctive molecular portrait of each tumour. Twenty of the tumours were sampled twice, before and after a 16-week course of doxorubicin chemotherapy, and two tumours were paired with a lymph node metastasis from the same patient. Gene expression patterns in two tumour samples from the same individual were almost always more similar to each other than either was to any other sample. Sets of co-expressed genes were identi®ed for which variation in messenger RNA levels could be related to speci®c features of physiological variation. The tumours could be classi®ed into subtypes distinguished by pervasive differences in their gene expression patterns

    Implementation of an all-electron GW approximation based on the PAW method without plasmon pole approximation: application to Si, SiC, AlAs, InAs, NaH and KH

    Full text link
    A new implementation of the GW approximation (GWA) based on the all-electron Projector-Augmented-Wave method (PAW) is presented, where the screened Coulomb interaction is computed within the Random Phase Approximation (RPA) instead of the plasmon-pole model. Two different ways of computing the self-energy are reported. The method is used successfully to determine the quasiparticle energies of six semiconducting or insulating materials: Si, SiC, AlAs, InAs, NaH and KH. To illustrate the novelty of the method the real and imaginary part of the frequency-dependent self-energy together with the spectral function of silicon are computed. Finally, the GWA results are compared with other calculations, highlighting that all-electron GWA results can differ markedly from those based on pseudopotential approaches.Comment: 11pages,3figures, submitted to PR
    corecore