9 research outputs found

    Downregulation of Protein 4.1R, a Mature Centriole Protein, Disrupts Centrosomes, Alters Cell Cycle Progression, and Perturbs Mitotic Spindles and Anaphase▿

    No full text
    Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G1 accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events

    Affinity Purification of Protein Complexes in C. elegans

    No full text
    C. elegans is a powerful metazoan model system to address fundamental questions in cell and developmental biology. Research in C. elegans has traditionally focused on genetic, physiological, and cell biological approaches. However, C. elegans is also a facile system for biochemistry: worms are easy to grow in large quantities, the functionality of tagged fusion proteins can be assessed using mutants or RNAi, and the relevance of putative interaction partners can be rapidly tested in vivo. Combining biochemistry with function-based genetic and RNA interference screens can rapidly accelerate the delineation of protein networks and pathways in diverse contexts. In this chapter, we focus on two strategies to identify protein-protein interactions: single-step immunoprecipitation and tandem affinity purification. We describe methods for growth of worms in large-scale liquid culture, preparation of worm and embryo extracts, immunoprecipitation, and tandem affinity purification. In addition, we describe methods to test specificity of antibodies, strategies for optimizing starting material, and approaches to distinguish specific from non-specific interactions. Keywords: Affinity; Culture; Epitope; Immunoblotting; Immunoprecipitation; Polyclona

    β-Catenin is a Nek2 substrate involved in centrosome separation

    Get PDF
    β-Catenin plays important roles in cell adhesion and gene transcription, and has been shown recently to be essential for the establishment of a bipolar mitotic spindle. Here we show that β-catenin is a component of interphase centrosomes and that stabilization of β-catenin, mimicking mutations found in cancers, induces centrosome splitting. Centrosomes are held together by a dynamic linker regulated by Nek2 kinase and its substrates C-Nap1 (centrosomal Nek2-associated protein 1) and Rootletin. We show that β-catenin binds to and is phosphorylated by Nek2, and is in a complex with Rootletin. In interphase, β-catenin colocalizes with Rootletin between C-Nap1 puncta at the proximal end of centrioles, and this localization is dependent on C-Nap1 and Rootletin. In mitosis, when Nek2 activity increases, β-catenin localizes to centrosomes at spindle poles independent of Rootletin. Increased Nek2 activity disrupts the interaction of Rootletin with centrosomes and results in binding of β-catenin to Rootletin-independent sites on centrosomes, an event that is required for centrosome separation. These results identify β-catenin as a component of the intercentrosomal linker and define a new function for β-catenin as a key regulator of mitotic centrosome separation
    corecore