7 research outputs found

    Spectroscopically determined potential energy surface of H216O up to 25 000 cm–1

    Get PDF
    A potential energy surface for the major isotopomer of water is constructed by fitting to observed vibration–rotation energy levels of the system using the exact kinetic energy operator nuclear motion program DVR3D. The starting point for the fit is the ab initio Born–Oppenheimer surface of Partridge and Schwenke [J. Chem. Phys. 106, 4618 (1997)] and corrections to it: both one- and two-electron relativistic effects, a correction to the height of the barrier to linearity, allowance for the Lamb shift and the inclusion of both adiabatic and nonadiabatic non-Born–Oppenheimer corrections. Fits are made by scaling the starting potential by a morphing function, the parameters of which are optimized. Two fitted potentials are presented which only differ significantly in their treatment of rotational nonadiabatic effects. Energy levels up to 25 468 cm–1 with J = 0, 2, and 5 are fitted with only 20 parameters. The resulting potentials predict experimentally known levels with J≤10 with a standard deviation of 0.1 cm–1, and are only slightly worse for J = 20, for which rotational nonadiabatic effects are significant. The fits showed that around 100 known energy levels are probably the result of misassignments. Analysis of misassigned levels above 20 000 cm–1 leads to the reassignment of 23 transitions

    Emission spectrum of hot HDO below 4000 cm-1

    Get PDF
    Fourier transform emission spectra were recorded using a mixture of H2O and D2O at a temperature of 1500 °C. The spectra were recorded in three overlapping sections and cover the wavenumber range 1800–3932 cm−1. This spectrum is analyzed together with a previously reported one spanning the 380–2190 cm−1 range [Parekunnel et al., J. Mol. Spectrosc. 2001 (28) 101]. This analysis leads to 4409 newly assigned HDO emission lines. This work particularly extends data on the (200) and (120) states of HDO for which newly determined energy levels are presented

    Analysis of hot D2O emission using spectroscopically determined potentials

    Get PDF
    Fourier transform emission spectra of D2O vapor were recorded at a temperature of 1500 °C in the wavenumber range 380–1880 cm–1. 15 346 lines were measured, of which the majority were identified as belonging to D2O. The spectrum was analyzed using variational nuclear motion calculations based on spectroscopically determined potential-energy surfaces. Initial assignments were made using a potential surface obtained by fitting a high accuracy ab initio potential. The new assignments were used to refine the potential surface, resulting in additional assignments. A total of 6400 D2O transitions were assigned and 2144 new D2O energy levels were obtained. Transitions involving the 42 and 52 bending states, with band origins of 4589.30 (±0.02) and 5679.6 (±0.1) cm–1, respectively, were assigned for the first time

    Water line parameters for weak lines in the range 9,000–12,700 cm-1

    Get PDF
    A total of 7923 transitions previously derived from long pathlength, Fourier transform spectra of pure water vapor (Schermaul et al., J. Mol. Spectrosc. 211 (2002) 169) have been refitted and reanalyzed using a newly calculated variational linelist. Of these, 6600 lines are weaker than 1 × 10−24 cm/molecule, for which reliable intensities are obtained. These weak lines include 1082 lines, largely due to H216O, which have not been previously observed. A total of 7156 lines were assigned resulting in 329 new energy levels for H216O spread over 32 vibrational levels. Estimates are also given for the band origins of the (022), (140), and (051) vibrational states

    On equilibrium structures of the water molecule

    Get PDF
    Equilibrium structures are fundamental entities in molecular sciences. They can be inferred from experimental data by complicated inverse procedures which often rely on several assumptions, including the Born-Oppenheimer approximation. Theory provides a direct route to equilibrium geometries. A recent high-quality ab initio semiglobal adiabatic potential-energy surface (PES) of the electronic ground state of water, reported by Polyansky [ ibid. 299, 539 (2003)] and called CVRQD here, is analyzed in this respect. The equilibrium geometries resulting from this direct route are deemed to be of higher accuracy than those that can be determined by analyzing experimental data. Detailed investigation of the effect of the breakdown of the Born-Oppenheimer approximation suggests that the concept of an isotope-independent equilibrium structure holds to about 3x10(-5) A and 0.02 degrees for water. The mass-independent [Born-Oppenheimer (BO)] equilibrium bond length and bond angle on the ground electronic state PES of water is r(e)(BO)=0.957 82 A and theta(e)(BO)=104.48(5)degrees, respectively. The related mass-dependent (adiabatic) equilibrium bond length and bond angle of (H2O)-O-16 is r(e)(ad)=0.957 85 A and theta(e)(ad)=104.50(0)degrees, respectively, while those of (D2O)-O-16 are r(e)(ad)=0.957 83 A and theta(e)(ad)=104.49(0)degrees. Pure ab initio prediction of J=1 and 2 rotational levels on the vibrational ground state by the CVRQD PESs is accurate to better than 0.002 cm(-1) for all isotopologs of water considered. Elaborate adjustment of the CVRQD PESs to reproduce all observed rovibrational transitions to better than 0.05 cm(-1) (or the lower ones to better than 0.0035 cm(-1)) does not result in noticeable changes in the adiabatic equilibrium structure parameters. The expectation values of the ground vibrational state rotational constants of the water isotopologs, computed in the Eckart frame using the CVRQD PESs and atomic masses, deviate from the experimentally measured ones only marginally, especially for A(0) and B-0. The small residual deviations in the effective rotational constants are due to centrifugal distortion, electronic, and non-Born-Oppenheimer effects. The spectroscopic (nonadiabatic) equilibrium structural parameters of (H2O)-O-16, obtained from experimentally determined A(0)(') and B-0(') rotational constants corrected empirically to obtain equilibrium rotational constants, are r(e)(sp)=0.957 77 A and theta(e)(sp)=104.48 degrees

    Laboratory spectroscopy of hot water near 2-microns and sunspot spectroscopy in the H-band region

    Get PDF
    The infrared spectrum of sunspots is analyzed in the H-band region (55406997 cm-1) with the aid of a new, hot (T = 1800 K) laboratory emission spectrum of water covering 48787552 cm-1. There are 682 lines in the sunspot spectrum and 5589 lines in the laboratory spectrum assigned quantum numbers corresponding to transitions due to H216O using a combination of previously known experimental energy levels for water and variational line lists. A further 201 unassigned lines common to both spectra can also be associated with water

    Cavity ring-down spectroscopy of (H2O)-O-17 in the range 16570-17125 cm(-1)

    Get PDF
    Following previous investigations on (H2O)-O-16 and (H2O)-O-18 by cavity ring-down spectroscopy, this method has now been applied to investigate the energy region of the 5 nu polyad in the absorption spectrum of (H2O)-O-17. In the range 16570-17125 cm(-1). the highest energy range investigated for the (H2O)-O-17 isotopologue so far, 516 lines are attributed to (H2O)-O-17 and assigned from a newly generated line list. (C) 2006 Elsevier Inc. All rights reserved
    corecore